# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8739 | 0 | 0.9483 | LCT-EF258 with S17I Mutation in DprA Exhibits Horizontal Gene Transfer Deficiency After Spaceflight. BACKGROUND: Space is a special environment in which microgravity and cosmic rays are the primary factors that induce gene mutations of microorganisms. In our previous studies, a single point mutation in the gene dprA was found in an Enterococcus faecium strain of LCT-EF258 after spaceflight. DNA processing protein A (DprA) plays a prominent role in the horizontal transfer of genes among bacteria (such as Streptococcus pneumoniae, Helicobacter pylori, Bacillus subtilis, and Rhodobacter capsulatus). However, the function of DprA in E. faecium remains unknown. Furthermore, E. faecium could acquire antibiotic resistance through the horizontal transfer of antibiotic resistance genes, but it is unclear whether dprA mutants could affect this process in E. faecium.METHODS: In this study, we constructed a plasmid containing the vancomycin resistance gene vanA and then transferred the gene vanA into the dprA-mutant strain LCT-EF258 and the control strain LCT-EF90 using the electroporation technique. We then used Discovery Studio(TM) software to construct the 3D protein structure.RESULTS: The results showed that the horizontal transfer efficiency of the vancomycin resistance gene vanA in the dprA-mutant E. faecium decreased. And the hydrophobic core of the mutant DprA became stable and the binding affinity between the mutant DprA and ssDNA reduced.DISCUSSION: This study is an exploration of bacterial gene mutation after spaceflight. The dprA mutant could affect the ability of E. faecium to acquire exogenous resistance gene vanA, which offered us an interesting path to block the dissemination of resistance genes between strains.Yu Y, Chang D, Guo Q, Wang J, Liu C. LCT-EF258 with S171 mutation in DprA exhibits horizontal gene transfer deficiency after spaceflight. Aerosp Med Hum Perform. 2019; 90(2):116-122. | 2019 | 30670121 |
| 335 | 1 | 0.9351 | Construction and characterization of a replication-competent retroviral shuttle vector plasmid. We constructed two versions of an RCASBP-based retroviral shuttle vector, RSVP (RCASBP shuttle vector plasmid), containing either the zeocin or blasticidin resistance gene. In this vector, the drug resistance gene is expressed in avian cells from the long terminal repeat (LTR) promoter, whereas in bacteria the resistance gene is expressed from a bacterial promoter. The vector contains a bacterial origin of replication (ColE1) to allow circular viral DNA to replicate as a plasmid in bacteria. The vector also contains the lac operator sequence, which binds to the lac repressor protein, providing a simple and rapid way to purify the vector DNA. The RSVP plasmid contains the following sequence starting with the 5" end: LTR, gag, pol, env, drug resistance gene, lac operator, ColE1, LTR. After this plasmid was transfected into DF-1 cells, we were able to rescue the circularized unintegrated viral DNA from RSVP simply by transforming the Hirt DNA into Escherichia coli. Furthermore, we were able to rescue the integrated provirus. DNA from infected cells was digested with an appropriate restriction enzyme (ClaI) and the vector-containing segments were enriched using lac repressor protein and then self-ligated. These enriched fractions were used to transform E. coli. The transformation was successful and we did recover integration sites, but higher-efficiency rescue was obtained with electroporation. The vector is relatively stable upon passage in avian cells. Southern blot analyses of genomic DNAs derived from successive viral passages under nonselective conditions showed that the cassette (drug resistance gene-lac operator-ColE1) insert was present in the vector up to the third viral passage for both resistance genes, which suggests that the RSVP vectors are stable for approximately three viral passages. Together, these results showed that RSVP vectors are useful tools for cloning unintegrated or integrated viral DNAs. | 2002 | 11799171 |
| 803 | 2 | 0.9350 | Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. | 1992 | 1624446 |
| 6349 | 3 | 0.9349 | High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BACKGROUND: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. RESULTS: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. CONCLUSION: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study. | 2009 | 19758450 |
| 3018 | 4 | 0.9348 | The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. | 1991 | 1946749 |
| 3002 | 5 | 0.9348 | An IS26 variant with enhanced activity. The insertion sequence IS26 plays a major role in the mobilization, expression and dissemination of antibiotic resistance genes in Gram-negative bacteria. Though IS26 is abundant in sequenced genomes and in plasmids that harbour antibiotic resistance genes, only a few minor variations in the IS26 sequence have been recorded. The most common variant, IS26* (also known as IS15Δ1), encodes a Tnp26 transposase with a single amino acid substitution, G184N in the catalytic domain. Using computational modelling, this substitution was predicted to increase the length of the helix that includes the E173 residue of the catalytic DDE triad, and its effect on activity was tested. An IS26 mutant generated in vitro producing Tnp26-G184N formed cointegrates in a standard untargeted reaction at 5-fold higher frequency than IS26 producing Tnp26. When the target included a single copy of IS26, the G184N substitution increased the cointegration frequency 10-fold and the reaction was targeted and conservative. Hence, the substitution increased Tnp26 activity. The longer helix may stabilise the position of the E173 of the DDE for the catalysis reaction and the specific G184N substitution may also enhance activity by increasing binding to the terminal inverted repeats. | 2019 | 30753435 |
| 818 | 6 | 0.9348 | Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation. | 1998 | 9661023 |
| 807 | 7 | 0.9345 | Transcriptomic analysis of Saccharomyces cerevisiae upon honokiol treatment. Honokiol (HNK), one of the main medicinal components in Magnolia officinalis, possesses antimicrobial activity against a variety of pathogenic bacteria and fungi. However, little is known of the molecular mechanisms underpinning the antimicrobial activity. To explore the molecular mechanism of its antifungal activity, we determined the effects of HNK on the mRNA expression profile of Saccharomyces cerevisiae using a DNA microarray approach. HNK markedly induced the expression of genes related to iron uptake and homeostasis. Conversely, genes associated with respiratory electron transport were downregulated, mirroring the effects of iron starvation. Meanwhile, HNK-induced growth deficiency was partly rescued by iron supplementation and HNK reacted with iron, producing iron complexes that depleted iron. These results suggest that HNK treatment induced iron starvation. Additionally, HNK treatment resulted in the upregulation of genes involved in protein synthesis and drug resistance networks. Furthermore, the deletion of PDR5, a gene encoding the plasma membrane ATP binding cassette (ABC) transporter, conferred sensitivity to HNK. Overexpression of PDR5 enhanced resistance of WT and pdr5Δ strains to HNK. Taken together, these findings suggest that HNK, which can be excluded by overexpression of Pdr5, functions in multiple cellular processes in S. cerevisiae, particularly in inducing iron starvation to inhibit cell growth. | 2017 | 28499955 |
| 6350 | 8 | 0.9345 | Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BACKGROUND: Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. RESULTS: Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI) but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. CONCLUSION: Our results indicate that expression of the chromate transporter gene chrA1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the chrIA1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of B. cereus SJ1. | 2010 | 20723231 |
| 806 | 9 | 0.9344 | A two-component small multidrug resistance pump functions as a metabolic valve during nicotine catabolism by Arthrobacter nicotinovorans. The genes nepAB of a small multidrug resistance (SMR) pump were identified as part of the pAO1-encoded nicotine regulon responsible for nicotine catabolism in Arthrobacter nicotinovorans. When [(14)C]nicotine was added to the growth medium the bacteria exported the (14)C-labelled end product of nicotine catabolism, methylamine. In the presence of the proton-motive force inhibitors 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the proton ionophore nigericin, export of methylamine was inhibited and radioactivity accumulated inside the bacteria. Efflux of [(14)C]nicotine-derived radioactivity from bacteria was also inhibited in a pmfR : cmx strain with downregulated nepAB expression. Because of low amine oxidase levels in the pmfR : cmx strain, gamma-N-methylaminobutyrate, the methylamine precursor, accumulated. Complementation of this strain with the nepAB genes, carried on a plasmid, restored the efflux of nicotine breakdown products. Both NepA and NepB were required for full export activity, indicating that they form a two-component efflux pump. NepAB may function as a metabolic valve by exporting methylamine, the end product of nicotine catabolism, and, in conditions under which it accumulates, the intermediate gamma-N-methylaminobutyrate. | 2007 | 17464069 |
| 3003 | 10 | 0.9339 | IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions. | 2016 | 27303727 |
| 5136 | 11 | 0.9339 | New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Cupriavidus metallidurans strain CH34 is a beta-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related beta-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance. | 2009 | 19390985 |
| 801 | 12 | 0.9338 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |
| 3013 | 13 | 0.9338 | Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. OBJECTIVES: The multiresistance plasmid pSCFS1 from Staphylococcus sciuri was sequenced completely and analysed with regard to its gene organization and the putative role of a novel ABC transporter in antimicrobial resistance. METHODS: Plasmid pSCFS1 was transformed into Staphylococcus aureus RN4220, overlapping restriction fragments were cloned into Escherichia coli plasmid vectors and sequenced. For further analysis of the ABC transporter, a approximately 3 kb EcoRV-HpaI fragment was cloned into the staphylococcal plasmid pT181MCS and the respective S. aureus RN4220 transformants were subjected to MIC determination. RESULTS: A total of 14 ORFs coding for proteins of >100 amino acids were detected within the 17 108 bp sequence of pSCFS1. Five of them showed similarity to recombination/mobilization genes while another two were similar to plasmid replication genes. In addition to the previously described genes cfr for chloramphenicol/florfenicol resistance and erm(33) for inducible resistance to macrolide-lincosamide-streptogramin B resistance, a Tn554-like spectinomycin resistance gene and Tn554-related transposase genes were identified. Moreover, a novel ABC transporter was detected and shown to mediate low-level lincosamide resistance. CONCLUSION: Plasmid pSCFS1 is composed of various parts which show similarity to sequences known to occur on plasmids or transposons of Gram-positive, but also Gram-negative bacteria. It is likely that pSCFS1 represents the result of inter-plasmid recombination events also involving the truncation of a Tn554-like transposon. | 2004 | 15471995 |
| 494 | 14 | 0.9337 | The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments. | 1996 | 8932707 |
| 492 | 15 | 0.9337 | Identification of A Novel Arsenic Resistance Transposon Nested in A Mercury Resistance Transposon of Bacillus sp. MB24. A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted in a 13.8-kbp transposon-like fragment, were found to be sandwiched between two transposable genes of the TnMERI1-like transposon of a mercury resistant bacterium, Bacillus sp. MB24. The presence of a single transcription start site in each cluster determined by 5'-RACE suggested that both are operons. Quantitative real time RT-PCR showed that the transcription of the arsR genes contained in each operon was induced by arsenite, while arsR2 responded to arsenite more sensitively and strikingly than arsR1 did. Further, arsenic resistance complementary experiments showed that the ars2 operon conferred arsenate and arsenite resistance to an arsB-knocked out Bacillus host, while the ars1 operon only raised arsenite resistance slightly. This transposon nested in TnMARS1 was designated as TnARS1. Multi-gene cluster blast against bacteria and Bacilli whole genome sequence databases suggested that TnMARS1 is the first case of a TnMERI1-like transposon combined with an arsenic resistance transposon. The findings of this study suggested that TnMERI1-like transposons could recruit other mobile elements into its genetic structure, and subsequently cause horizontal dissemination of both mercury and arsenic resistances among Bacilli in Minamata Bay. | 2019 | 31744069 |
| 6123 | 16 | 0.9336 | Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. BACKGROUND: Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS: The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS: The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS: This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms. | 2020 | 32272213 |
| 3004 | 17 | 0.9336 | IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit. We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. IMPORTANCE: Resistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26 plays a major role in the acquisition and dissemination of antibiotic resistance. IS257 (IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26 can use a conservative movement mechanism in which an incoming IS26 targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26 by examining whether the reverse precise excision reaction is also catalyzed by the IS26 transposase. | 2015 | 26646012 |
| 6348 | 18 | 0.9336 | Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. A polar bacterium was isolated from Arctic sea sediments and identified as Psychromonas artica, based on 16S rDNA sequence. Psychromonas artica KOPRI 22215 has an optimal growth temperature of 10 degrees C and a maximum growth temperature of 25 degrees C, suggesting this bacterium is a psychrophile. Cold shock proteins (Csps) are induced upon temperature downshift by more than 10 degrees C. Functional studies have researched mostly Csps of a mesophilic bacterium Escherichia coli, but not on those of psychrophilic bacteria. In an effort to understand the molecular mechanisms of psychrophilic bacteria that allow it withstand freezing environments, we cloned a gene encoding a cold shock protein from P. artica KOPRI 22215 (CspA(Pa)) using the conserved sequences in csp genes. The 204 bp-long ORF encoded a protein of 68 amino acids, sharing 56% homology to previously reported E. coli CspA protein. When CspA(Pa) was overexpressed in E. coli, it caused cell growth-retardation and morphological elongation. Interestingly, overexpression of CspA(Pa) drastically increased the host's cold-resistance by more than ten times, suggesting the protein aids survival in polar environments. | 2010 | 20169403 |
| 4944 | 19 | 0.9336 | Genomic characterization of Escherichia coli LCT-EC001, an extremely multidrug-resistant strain with an amazing number of resistance genes. BACKGROUND: Multidrug resistance is a growing global public health threat with far more serious consequences than generally anticipated. In this study, we investigated the antibiotic resistance and genomic traits of a clinical strain of Escherichia coli LCT-EC001. RESULTS: LCT-EC001 was resistant to 16 kinds of widely used antibiotics, including fourth-generation cephalosporins and carbapenems. In total, up to 68 determinants associated with antibiotic resistance were identified, including 8 beta-lactamase genes (notably producing ESBLs and KPCs), 31 multidrug efflux system genes, 6 outer membrane transport system genes, 4 aminoglycoside-modifying enzyme genes, 10 two-component regulatory system genes, and 9 other enzyme or transcriptional regulator genes, covering nearly all known drug-resistance mechanisms in E. coli. More than half of the resistance genes were located close to mobile genetic elements, such as plasmids, transposons, genomics islands, and insertion sequences. Phylogenetic analysis revealed that this strain may have evolved from E. coli K-12 but is a completely new MLST type. CONCLUSIONS: Antibiotic resistance was extremely severe in E. coli LCT-EC001, mainly due to mobile genetic elements that allowed the gain of a large quantity of resistance genes. The antibiotic resistance genes of E. coli LCT-EC001 can probably be transferred to other bacteria. To the best of our knowledge, this is the first report of a strain of E. coli which has such a large amount of antibiotic resistance genes. Apart from providing an E. coli reference genome with an extremely high multidrug-resistant background for future analyses, this work also offers a strategy for investigating the complement and characteristics of genes contributing to drug resistance at the whole-genome level. | 2019 | 31139265 |