# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6377 | 0 | 0.8520 | Comparative metagenomics and characterization of antimicrobial resistance genes in pasteurized and homemade fermented Arabian laban. The aim of this study was to investigate bacterial diversity and function in a fermented milk drink called laban, which is traditionally served in the Middle East, Africa, and Indian subcontinent. Pasteurized laban (LBP) and unpasteurized, homemade, raw laban (LBR) underwent 16S rRNA gene amplicon and shotgun sequencing to analyze their bacterial community, presence of antimicrobial resistance genes (ARGs), and metabolic pathways. This study highlighted relatively greater diversity in LBR bacterial populations compared to LBP, despite containing similar major taxa that consisted primarily of Firmicutes followed by Proteobacteria, Bacteroidetes, and Actinobacteria. The dominant species, Streptococcus thermophilus, was relatively more abundant in LBP (80.7%) compared to LBR (47.9%). LBR had increased diversity and higher relative abundance of several known probiotic bacteria, such as Streptococcus salivarius and Lactococcus lactis, whereas Lactobacillus acidophilus was detected at a higher abundance in LBP. Pathogens like Acinetobacter baumannii, Streptococcus pneumoniae, Streptococcus pyogenes, and Escherichia coli had lower abundance in LBP compared to LBR. Thirty-three ARGs were detected in LBR compared to nine in LBP and are responsible for resistance to 11 classes of antibiotics. A significant proportion of the metagenomes from both types of laban were assigned to housekeeping functions, such as amino acid metabolism, translation, membrane transport, and carbohydrate metabolism. LBR demonstrated increased diversity in probiotics and metabolic functions compared to LBP. However, the relatively high diversity of pathogenic and opportunistic bacteria and ARGs in LBR raises safety concerns and highlights the need for a more hygienic environment for the processing of homemade fermented dairy foods. | 2020 | 33233218 |
| 6378 | 1 | 0.8317 | Metagenomics reveals the divergence of gut microbiome composition and function in two common pika species (Ochotona curzoniae and Ochotona daurica) in China. Gut microbiome plays crucial roles in animal adaptation and evolution. However, research on adaptation and evolution of small wild high-altitude mammals from the perspective of gut microbiome is still limited. In this study, we compared differences in intestinal microbiota composition and function in Plateau pikas (Ochotona curzoniae) and Daurian pikas (O. daurica) using metagenomic sequencing. Our results showed that microbial community structure had distinct differences in different pika species. Prevotella, Methanosarcina, Rhizophagus, and Podoviridae were abundant bacteria, archaea, eukaryotes, and viruses in Plateau pikas, respectively. However, Prevotella, Methanosarcina, Ustilago, and Retroviridae were dominated in Daurian pikas. Functional pathways related to carbohydrate metabolism that refer to the utilization of pectin, hemicellulose, and debranching enzymes were abundant in Plateau pikas, while the function for degradation of chitin, lignin, and cellulose was more concentrated in Daurian pikas. Pika gut had abundant multidrug resistance genes, followed by glycopeptide and beta-lactamase resistance genes, as well as high-risk antibiotic resistance genes, such as mepA, tetM, and bacA. Escherichia coli and Klebsiella pneumoniae may be potential hosts of mepA. This research provided new insights for adaptation and evolution of wild animals from perspective of gut microbiome and broadened our understanding of high-risk antibiotic resistance genes and potential pathogens of wild animals. | 2024 | 39500545 |
| 8126 | 2 | 0.8279 | Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments. | 2025 | 40570627 |
| 6080 | 3 | 0.8276 | Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries. | 2023 | 38276185 |
| 6388 | 4 | 0.8252 | A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota. Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied. | 2023 | 37504286 |
| 6380 | 5 | 0.8239 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 7660 | 6 | 0.8237 | Metagenomic Insights into the Microbiome and Resistance Genes of Traditional Fermented Foods in Arabia. This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects. | 2023 | 37761051 |
| 7738 | 7 | 0.8231 | The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity. | 2022 | 35870206 |
| 8641 | 8 | 0.8226 | Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation. Chinese strong-flavor baijiu (CSFB) brewing is a spontaneously solid-state fermentation process for approximately 60 days. Numerous microorganisms grow, die, and spark a series of metabolic reactions during fermentation. In this study, the microbial community and structure between total and viable bacteria in zaopei from the 5- and 20-year pits of CSFB are revealed by amplicon sequencing. Metagenome sequencing was applied to investigate acid resistance genes in Lactobacillus and predict carbohydrate active enzyme in zaopei. Besides, SourceTracker was conducted to expose bacterial sources. Results revealed that there was no significant difference in the bacterial community and structure between the total and viable bacteria; Lactobacillus was the most dominant bacterium in zaopei of two types of pits. Meanwhile, acid resistance genes argR, aspA, ilvE, gshA, DnaK, and cfa were genes that sustained Lactobacillus survival in the late stages of fermentation with high contents of acid and ethanol, and glycosyltransferases were identified as the predominated enzymes during the CSFB fermentation which catalyzed the process of lactic acid generation via Embden-Meyerhof-Parnas pathway and Hexose Monophosphate Pathway. Moreover, the environment contributed most bacteria to zaopei of the 5- and 20-year pits. These findings will provide a deeper understanding of the microbial community structure of viable and total bacteria and the reason for the dominance of Lactobacillus in the later stages of CSFB fermentation. | 2023 | 37087286 |
| 8471 | 9 | 0.8223 | Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress. | 2024 | 38563743 |
| 7663 | 10 | 0.8221 | Deep-sea sediment metagenome from Bay of Bengal reveals distinct microbial diversity and functional significance. Bay of Bengal (BoB) has immense significance with respect to ecological diversity and natural resources. Studies on microbial profiling and their functional significance at sediment level of BoB remain poorly represented. Herein, we describe the microbial diversity and metabolic potentials of BOB deep-sea sediment samples by subjecting the metagenomes to Nanopore sequencing. Taxonomic diversity ascertained at various levels revealed that bacteria belonging to phylum Proteobacteria predominantly represented in sediment samples NIOT_S7 and NIOT_S9. A comparative study with 16S datasets from similar ecological sites revealed depth as a crucial factor in determining taxonomic diversity. KEGG annotation indicated that bacterial communities possess sequence reads corresponding to carbon dioxide fixation, sulfur, nitrogen metabolism, but at varying levels. Additionally, gene sequences related to bioremediation of dyes, plastics, hydrocarbon, antibiotic resistance, secondary metabolite synthesis and metal resistance from both the samples as studied indicate BoB to represent a highly diverse environmental niche for further exploration. | 2022 | 36423774 |
| 6389 | 11 | 0.8218 | Microbial community and functions involved in smokeless tobacco product: a metagenomic approach. Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users. | 2024 | 38918238 |
| 508 | 12 | 0.8216 | Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet. | 2024 | 38156502 |
| 6083 | 13 | 0.8213 | Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 10(7) cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress. | 2024 | 38189906 |
| 6025 | 14 | 0.8212 | Phenotypic and Genomic Insights into Schleiferilactobacillus harbinensis WU01, a Candidate Probiotic with Broad-Spectrum Antimicrobial Activity Against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) Pathogens. The increasing prevalence of multidrug-resistant (MDR) pathogens, particularly ESKAPE bacteria, necessitates alternative antimicrobial strategies. Probiotics, particularly lactic acid bacteria, protect against pathogenic infections. This study aimed to characterize Schleiferilactobacillus harbinensis WU01, isolated from fermented palm sap, and evaluate its probiotic potential and antimicrobial activity. Its probiotic characteristics were assessed based on low-pH and bile tolerance, auto-aggregation, hydrophobicity, and adhesion to Caco-2 cells. Antimicrobial activity against ESKAPE pathogens was evaluated using the agar well diffusion assay. Whole-genome sequencing (WGS) and in silico analysis were performed to identify bacteriocin-related genes, virulence factors, and antibiotic-resistance genes. WU01 exhibited a strong tolerance to gastrointestinal conditions, with high survival rates under acidic and bile-salt environments. S. harbinensis WU01 demonstrated significant auto-aggregation, high hydrophobicity, and strong adhesion to Caco-2 cells. Antimicrobial assays revealed inhibitory activity against MDR ESKAPE pathogens, which correlated with the presence of bacteriocin-related genes, including those homologous to Carnocin_CP52. Molecular dynamics (MDs) simulations confirmed the interaction of Carnocin_CP52 with bacterial membranes, suggesting a mechanism for pathogen disruption. WGS confirmed the absence of virulence and antimicrobial-resistance genes, confirming its safety for probiotic applications. These findings suggest that S. harbinensis WU01 possesses probiotic properties and antimicrobial activity against ESKAPE pathogens. The combined results highlight its potential application in functional foods and therapeutic interventions. | 2025 | 40238333 |
| 195 | 15 | 0.8212 | Comparative Genomics of Acetic Acid Bacteria within the Genus Bombella in Light of Beehive Habitat Adaptation. It is known that the bacterial microbiota in beehives is essential for keeping bees healthy. Acetic acid bacteria of the genus Bombella colonize several niches in beehives and are associated with larvae protection against microbial pathogens. We have analyzed the genomes of 22 Bombella strains of different species isolated in eight different countries for taxonomic affiliation, central metabolism, prophages, bacteriocins and tetracycline resistance to further elucidate the symbiotic lifestyle and to identify typical traits of acetic acid bacteria. The genomes can be assigned to four different species. Three genomes show ANIb values and DDH values below species demarcation values to any validly described species, which identifies them as two potentially new species. All Bombella spp. lack genes in the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle, indicating a focus of intracellular carbohydrate metabolism on the pentose phosphate pathway or the Entner-Doudoroff pathway for which all genes were identified within the genomes. Five membrane-bound dehydrogenases were identified that catalyze oxidative fermentation reactions in the periplasm, yielding oxidative energy. Several complete prophages, but no bacteriocins, were identified. Resistance to tetracycline, used to prevent bacterial infections in beehives, was only found in Bombella apis MRM1(T). Bombella strains exhibit increased osmotolerance in high glucose concentrations compared to Gluconobacter oxydans, indicating adaption to high sugar environments such as beehives. | 2022 | 35630502 |
| 7658 | 16 | 0.8211 | Metagenomic and Antibiotic Resistance Analysis of the Gut Microbiota in Larus relictus and Anatidae Species Inhabiting the Honghaizi Wetland of Ordos, Inner Mongolia, from 2021 to 2023. Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria. | 2024 | 38792807 |
| 9996 | 17 | 0.8209 | In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies. Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené's organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively. | 2024 | 39770285 |
| 3064 | 18 | 0.8209 | High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications. | 2023 | 38136701 |
| 6076 | 19 | 0.8207 | Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application. | 2022 | 35365862 |