LAYERS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
638000.9944Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'.201121487198
699110.9943Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs.202336436623
802820.9941The fate of antibiotic resistance genes, microbial community, and potential pathogens in the maricultural sediment by live seaweeds and oxytetracycline. Three common seaweeds including Ulva fasciata, Codium cylindricum and Ishige okamurai were used for the remediation of maricultural wastewater and sediment in the presence/absence of trace level of oxytetracycline (OTC) in lab-scale experiments. Higher NO(3)(-)-N and PO(4)(3-)-P removal rates were achieved due to the presence of seaweeds, and trace OTC also had a positive effect on NO(3)(-)-N removal. A slight variation of 2.10-2.15% were observed in the total relative abundances of antibiotic resistance genes (ARGs) of different sediment samples after one-month operation. However, the variation of ARGs profiles by the co-existence of different seaweeds and OTC was in the descending order of Ishige okamurai > Codium cylindricum > Ulva fasciata, which was in accordance with the variation of microbial hosts at genus level. The abundance of dominant tetracycline resistance genes promoted by the co-existence of different seaweeds and OTC in compared with the presence of single seaweed or OTC via metagenomic sequencing and qPCR analysis, and the co-existence of Ishige okamurai and OTC exhibited the largest impact. The potential pathogens were more sensitive to the co-existence of seaweed and OTC than single seaweeds. Meanwhile, a variety of ARGs were enriched in the pathogens, and the dominant pathogenic bacteria of Vibrio had 133 Vibrio species with 28 subtypes of ARGs. The variation of ARGs profiles in the sediment were strongly related with the dominant phyla Proteobacteria, Actinobacteria, Firmicutes, Planctomycetes and Cyanobacteria. Besides, Nitrate level exhibited more significant effect on ∑ARGs, ARGs resistant to vancomycin and streptogramin_a, while phosphate level exhibited more positively significant effect on ARGs resistant to fosmidomycin, ATFBT and cephalosporin.202235780677
679530.9939Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.202438246293
811840.9939Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost. This study evaluated the effects of biocontrol Bacillus and fermenting bacteria addition on the microbial community, metabolic functions and antibiotic resistance genes (ARGs) of new prickly ash seed oil meal (PSOM)-biochar composting. The results showed that the addition of Bacillus subtilis and fermentation bacteria significantly increased the NH(4)(+)-N, bacterial abundance and fungal diversity of compost while decreasing the relative abundances (RAs) of carbon metabolism genes in mature compost. NH(4)(+)-N was significantly correlated with microbial abundance and diversity, and its increase was closely related to microbial amino acid metabolism. The addition of biocontrol and fermenting bacteria changed the RAs of ARGs, which was caused by changes in the potential hosts Proteobacteria, Bacteroidota and Firmicutes in the compost. Consequently, adding Bacillus and fermenting bacteria into PSOM to make composting was suggested as an effective method to promote nutrient transformation, regulate microbial activity and decrease RAs of tetracycline and vancomycin ARGs.202134339999
803050.9938Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Manure application contributes to the increased environmental burden of antibiotic resistance genes (ARGs). We investigated the response of tetracycline (tet) resistance genes and bacterial taxa to manure application amended with tetracyclines over two months. Representative tetracyclines (oxytetracycline, chlorotetracycline and doxycycline), tet resistance genes (tet(M), tet(O), tet(W), tet(S), tet(Q) and tet(X)) and bacterial taxa in the untreated soil, +manure, and +manure+tetracyclines groups were analyzed. The abundances of all tet resistance genes in the +manure group were significantly higher than those in the untreated soil group on day 1. The abundances of all tet resistance genes (except tet(Q) and tet(X)) were significantly lower in the +manure group than those in the +manure+tetracyclines group on day 30 and 60. The dissipation rates were higher in the +manure group than those in the +manure+tetracyclines group. Disturbance of soil bacterial community composition imposed by tetracyclines was also observed. The results indicated that tetracyclines slowed down the dissipation of tet resistance genes in arable soil after manure application. Application of manure amended with tetracyclines may provide a significant selective advantage for species affiliated to the taxonomical families of Micromonosporaceae, Propionibacteriaceae, Streptomycetaceae, Nitrospiraceae and Clostridiaceae.201828898804
699460.9937Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. Estuary sediments are chemically contaminated by adjacent coastal industrial cities, but the impact of organic pollutants on antibiotic resistance genes (ARGs) in estuarine sediments is unknown. We comprehensively analyzed the complex interactions between chemical pollutants (heavy metals and organic pollutants), mobile genetic elements (MGEs), and ARGs in estuarine sediments during various seasons. The results indicate that under the effects of the chemically polluted river water, the number of different estuarine sediment ARGs increased by 76.9%-92.3% in summer and 5.9%-35.3% in winter, and the abundance of these ARGs increased by 29-5195 times in summer and 48-239 times in winter. The abundance of sediment ARGs in distinct estuaries showed different seasonal trends. Seasonal changes had a greater impact on the abundance of estuarine sediment ARGs than on their diversity. The diversity of estuarine sediment ARGs was positively correlated with the chemical pollution levels. Furthermore, chemical pollution was positively correlated with MGEs, and MGEs were correlated with ARG abundance. These results indicate that ARGs are enriched in bacteria via horizontal gene transfer triggered by chemical pollution, promoting multi-antibiotic resistance in estuarine sediment bacteria. These findings have implications for our understanding of the distribution and propagation of ARGs in chemically polluted estuarine sediments.202031520936
699770.9937Linkage of antibiotic resistance genes, associated bacteria communities and metabolites in the wheat rhizosphere from chlorpyrifos-contaminated soil. Rhizosphere is a crucial site for the proliferation of antibiotic resistance genes (ARGs) in agricultural soil. Pesticide contamination is ubiquitous in soil, such as chlorpyrifos as one of the most commonly used pesticides. However, limited knowledge is reported about ARGs profiles changes and the driving mechanism of ARGs prevalence in rhizosphere soil after adding pesticide. In this study, irrespective of chlorpyrifos presence, the abundances of ARGs (tetM, tetO, tetQ, tetW, tetX, sul1 and sul2) and intI1 in rhizosphere soil of wheat were obviously higher than those in bulk soil. 20.0 mg·kg(-1) chlorpyrifos significantly increased the abundance of total ARGs and intI1 in bulk soil, respectively, at day 50 and 100, but not in rhizosphere soil. Rhizosphere influence on ARGs was far greater than chlorpyrifos. ARGs and intI1 abundances were higher at day 50 than ones at day 100. C/N ratio and NO(3)(-)-N content, which were affected by rhizosphere and cultivation time, significantly explained the increased ARGs. Compared to bulk soil, rhizosphere shifted host bacteria of tetracycline resistance genes (TRGs), intI1 at genus level, and host bacteria of sul1, sul2 at phylum level. Rhizosphere simplified the linkage of ARGs, host bacteria and metabolites. Bacterial communities played important roles in the variation of ARGs and intI1, and the difference in the distribution of potential hosts between bulk and rhizosphere soil was related to metabolites abundance and composition. These results provide valuable information for understanding the linkage of ARGs, associated bacteria communities and metabolites in the wheat rhizosphere soil.202032615437
797280.9936Sulfadiazine proliferated antibiotic resistance genes in the phycosphere of Chlorella pyrenoidosa: Insights from bacterial communities and microalgal metabolites. The phycosphere is an essential ecological niche for the proliferation of antibiotic resistance genes (ARGs). However, how ARGs' potential hosts change and the driving mechanism of metabolites under antibiotic stress in the phycosphere have seldom been researched. We investigated the response of Chlorella pyrenoidosa and the structure and abundance of free-living (FL) and particle-attached (PA) bacteria, ARGs, and metabolites under sulfadiazine by using real-time quantitative PCR, 16 S rRNA high-throughput. The linkage of key bacterial communities, ARGs, and metabolites through correlations was established. Through analysis of physiological indicators, Chlorella pyrenoidosa displayed a pattern of "low-dose promotion and high-dose inhibition" under antibiotic stress. ARGs were enriched in the PA treatment groups by 117 %. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria as potential hosts for ARGs. At the genus level, potential hosts included Sphingopyxis, SM1A02, Aquimonas, Vitellibacter, and Proteiniphilum. Middle and high antibiotic concentrations induced the secretion of metabolites closely related to potential hosts by algae, such as phytosphingosine, Lysophosphatidylcholine, and α-Linolenic acid. Therefore, changes in bacterial communities indirectly influenced the distribution of ARGs through alterations in metabolic products. These findings offer essential details about the mechanisms behind the spread and proliferation of ARGs in the phycosphere.202438795485
699590.9936Insight into the spatiotemporal distribution of antibiotic resistance genes in estuarine sediments during long-term ecological restoration. In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration.202336827800
7949100.9936Tetracycline and quinolone contamination mediate microbial and antibiotic resistant gene composition in epiphytic biofilms of mesocosmic wetlands. The fate and ecological impact of antibiotics on aquatic ecosystems have not been properly elucidated in mesocosm wetlands scale. This study explored how tetracyclines (TCs, including tetracycline TC and oxytetracycline) and fluoroquinolones (QNs, including ciprofloxacin CIP and levofloxacin) affect mesocosm wetlands vegetated by V. spiralis, focusing on their impact on epiphytic biofilm microbial communities and antibiotic resistance genes (ARGs). Results showed that submerged plants absorbed more antibiotics than sediment. Both TCs and QNs disrupted microbial communities in different ways and increased eukaryotic community diversity in a concentration-dependent manner (2-4 mg/L for CIP, 4-8 mg/L for TC). TCs mainly inhibited epiphytic bacteria, while CIP increased bacterial phyla abundance. TC reduced Cyanobacteriota, Acidobacteriota, and Patescibacteria but increased Bacillota, Bacteroidota, and Armatimonadota. In contrast, CIP reduced Bacteroidota, Cyanobacteriota, and Gemmatimonadota but increased Bacillota, Planctomycetota, and Acidobacteriota. Significant differences in ARG profiles were observed between QNs and TCs, with TCs having a more substantial effect on ARGs due to their stronger impact on bacterial communities. Both antibiotics raised ARG levels with higher concentrations, particularly for multidrug resistance, tetracyclines, trimethoprim, sulfonamides, aminoglycosides, and fosfomycin, emphasizing their role in antimicrobial resistance. The study suggests that antibiotics can either stimulate or inhibit ARGs depending on their effects on bacterial communities. This study provides key evidence on the ecological mechanisms underlying the impact of TCs and QNs on epiphytic microbes of mesocosm wetlands.202439321725
8070110.9936Impacts of combined pollution under gradient increasing and gradient decreasing exposure modes on activated sludge: Microbial communities and antibiotic resistance genes. The responses of microbial communities and antibiotic resistance genes (ARGs) to azithromycin and copper combined pollution under gradient increasing (from 0.5 to 10 mg/L) and decreasing exposure (from 10 to 0.5 mg/L) modes were investigated. Nitrification was inhibited more obviously under gradient increasing exposure mode. Responses of archaeal community and function structure were more obvious than bacteria under both exposure modes. The dominant bacterial and archaeal compositions (Hyphomicrobium, Euryarchaeota, etc.) were affected by two exposure modes, except some rare archaea (Methanoregula and Methanosarcina). There were more positive correlations between bacteria and archaea, and Nitrospira was keystone genus. Ammonia-oxidizing archaea (0.37-3.06%) and complete ammonia oxidizers (Nitrospira_ENR4) were enriched, and Nitrososphaera_viennensis was closely related to denitrifying genes (napA/B, nosZ, etc.). 50 ARG subtypes were detected and specific ARG subtypes (aac, ImrA, etc.) proliferated in two exposure modes. Bacteria and archaea were common hosts for 24 ARGs and contributed to their shifts.202234921920
6926120.9936Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application.202337247491
8021130.9936The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. The variation of antibiotic resistance genes (ARGs) and influential factors in pig manure composting were investigated by conducting simulated composting tests using four different supplement materials (wheat straw, corn straw, poplar sawdust and spent mushroom). The results show that the relative abundance of total ARGs increased by 0.19-1.61 logs after composting, and tetX, sulI, sulII, dfrA1 and aadA were the major contributors. The variations of ARG profiles and bacterial communities throughout the composting were clearly divided into mesophilic-thermophilic and cooling-maturation stages in all tests, while different supplement materials did not exert a noticeable influence. Network analysis demonstrated the diversity of bacterial hosts for ARGs, the existence of multiple antibiotic resistant bacteria, and the weak correlations between ARGs and physicochemical factors in the composting piles. Of note, integron intI1 and Mycobacterium (a potential pathogen) were positively correlated with eight and four ARGs, respectively, that displayed increased abundance after composting.202032109697
7905140.9935Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system. It is worth to reveal the long-term responses of antibiotic resistance genes (ARGs) in aerobic granular sludge (AGS) system exposed to high level enrofloxacin (ENR), sulfadiazine (SDZ) and triclosan (TCS). In present study, ppm level ENR, SDZ and TCS were added into three AGS reactors, respectively. ARGs in ENR and SDZ systems showed trends of increasing first and then decreasing, which were contrary to that in TCS system. 80%, 56% and 40% ARGs in ENR, SDZ and TCS systems, respectively, were enriched after loading, but several ARGs still kept high enrichment values after the withdrawn of loadings. The dominant bacteria in ENR (Flavobacterium), SDZ (Candidatus_Competibacter and Defluviicoccus) and TCS (Defluviicoccus) systems might contribute to the reductions of ARGs. IntI1 altered the overall ARGs profiles through horizontal gene transfer. The interactions of bacterial communities and environmental factors might be responsible for the different ARGs patterns in ENR, SDZ and TCS systems.202032470826
8100150.9935Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels.202235306090
8022160.9935Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting. In this study, physio-chemical properties, 45 antibiotics, 6 heavy metals, 42 antibiotic resistance genes (ARGs), 3 mobile genetic elements, and the bacterial community structure were investigated to analyze the fate of ARGs during sheep manure aerobic heap composting. Results showed that sheep manure heap composting could produce mature compost. The degradation processes reduced the total antibiotics content by 85%. The abundance of ARGs and mobile genetic elements (MGEs) were enriched 9-fold, with the major increases to sul and tet genes (sulI, sulII, tetQ, and tetX). Tetracycline and sulfonamide resistance genes were the most abundant ARGs after composting (more than 88% of all genes). The genes tetA, tetX and sulI were related to the most diverse bacteria that were most able to proliferate during heap composting. Therefore, sulI and tetX are the major ARGs to be controlled, and Actinobacteria and Bacteroidetes may be the major host bacteria.202133429314
6808170.9935Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems.202438135101
7036180.9935Role of Bentonite on the Mobility of Antibiotic Resistance Genes, and Microbial Community in Oxytetracycline and Cadmium Contaminated Soil. The effects of bentonite (BT), a commonly used heavy metal deactivator, on the ARGs and microbial communities in soils and lettuce systems contaminated by heavy metals and antibiotics are unclear. A study was conducted to investigate the effect of BT on the mobility of antibiotic resistance genes in oxytetracycline and cadmium contaminated soil. Results showed that the addition of BT reduced the accumulation of OTC and ARGs in the soil and lettuce roots, but increased the abundance of ARGs in lettuce leaves, and increase the risk of human pathogenic bacteria (HPB) transferring to lettuce leaves. Redundancy analysis showed that environmental factors (OTC, H(2)O, SOM, and pH) were the dominant factors that influence the distribution of ARGs and intI1. Network analysis showed that Proteobacteria and Bacteroidetes were the major host bacteria which caused changes in ARGs and intI1. There were significant positive correlations between ermX and ermQ, and a large number of HPB. The co-occurrence of intl1 with some ARGs (tetC, tetG, ermQ, sul1, and sul2), may threaten human health due to the dispersion of ARGs via horizontal gene transfer.201830546348
7156190.9935Effect of antibiotics, antibiotic-resistant bacteria, and extracellular antibiotic resistance genes on the fate of ARGs in marine sediments. Surface runoff is a prevalent source via which emerging pollutants (i.e., antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs)) enter marine sediments. However, few studies have investigated the effect of emerging pollutants on the fate of ARGs in marine sediments. Therefore, three systems were established to measure the relative abundances of four common ARGs (i.e., bla(TEM), tetA, tetC, and aphA) and the integron-integrase gene (intI1) after exposure to emerging pollutants in marine sediments from the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea in China. The results revealed that antibiotic exposure could decrease the relative abundance of most ARGs (including bla(TEM), tetA, and tetC) in these marine sediment samples. The exceptions were the relative abundance of bla(TEM) in the Bohai Sea marine sediments under ampicillin exposure and tetC in the Yellow Sea marine sediments under tetracycline exposure, which increased significantly. Among marine sediments challenged with ARB, the relative abundance of aphA in all four marine sediments displayed a decreasing trend, whereas the abundances of bla(TEM) and tetA in the marine sediments from the Bohai Sea and the South China Sea showed an increasing trend. The relative abundance of tetA in the marine sediments from the Yellow Sea and the East China Sea dropped markedly when exposed to extracellular ARG (eARG). Significant changes in bla(TEM) abundance were observed in the four marine sediments under eARG exposure. Gene aphA abundance showed the same trend as the intI1 abundance. IntI1 showed a decreasing trend under the exposure of antibiotic, ARB, or eARG, apart from the East and the South China Sea marine sediments under ampicillin conditions and the South China Sea marine sediments under RP4 plasmid condition. These findings suggest that dosing with emerging pollutants does not increase ARG abundance in marine sediments.202337245825