LAST - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
155600.9961Resistance to Colistin in Klebsiella Pneumoniae: A 4.0 Strain? The global rise of multidrug-resistant gram-negative bacteria represents an increasing threat to patient safety. From the first observation of a carbapenem-resistant gram-negative bacteria a global spread of extended-spectrum beta-lactamases and carbapenemases producing Klebsiella pneumoniae has been observed. Treatment options for multidrug-resistant K. pneumoniae are actually limited to combination therapy with some aminoglycosides, tigecycline and to older antimicrobial agents. Unfortunately, the prevalence of colistin-resistant and tigecycline-resistant K. pneumoniae is increasing globally. Infection due to colistin-resistant K. pneumoniae represents an independent risk factor for mortality. Resistance to colistin in K. pneumoniae may be multifactorial, as it is mediated by chromosomal genes or plasmids. The emergence of transmissible, plasmid-mediated colistin resistance is an alarming finding. The absence of new agents effective against resistant Gram-negative pathogens means that enhanced surveillance, compliance with infection prevention procedures, and antimicrobial stewardship programs will be required to limit the spread of colistin-resistant K. pneumoniae.201728626539
251710.9961The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens.201728375512
155520.9961Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Carbapenemases, with versatile hydrolytic capacity against β-lactams, are now an important cause of resistance of Gram-negative bacteria. The genes encoding for the acquired carbapenemases are associated with a high potential for dissemination. In addition, infections due to Gram-negative bacteria with acquired carbapenemase production would lead to high clinical mortality rates. Of the acquired carbapenemases, Klebsiella pneumoniae carbapenemase (Ambler class A), Verona integron-encoded metallo-β-lactamase (Ambler class B), New Delhi metallo-β-lactamase (Ambler class B) and many OXA enzymes (OXA-23-like, OXA-24-like, OXA-48-like, OXA-58-like, class D) are considered to be responsible for the worldwide resistance epidemics. As compared with monotherapy with colistin or tigecycline, combination therapy has been shown to effectively lower case-fatality rates. However, development of new antibiotics is crucial in the present pandrug-resistant era.201525812463
153330.9961A Transferable IncC-IncX3 Hybrid Plasmid Cocarrying bla(NDM-4), tet(X), and tmexCD3-toprJ3 Confers Resistance to Carbapenem and Tigecycline. Tigecycline is a last-resort antimicrobial against carbapenemase-producing Enterobacterales (CPE). However, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, have emerged in China and have spread possibly worldwide. Tet(X) family proteins function as tigecycline-inactivating enzymes, and TMexCD-TOprJ complexes function as efflux pumps for tigecycline. Here, to the best of our knowledge we report a CPE isolate harboring both emerging tigecycline resistance factors for the first time. A carbapenem- and tigecycline-resistant Klebsiella aerogenes strain, NUITM-VK5, was isolated from an urban drainage in Vietnam in 2021, and a plasmid, pNUITM-VK5_mdr, cocarrying tet(X) and tmexCD3-toprJ3 along with the carbapenemase gene bla(NDM-4) was identified in NUITM-VK5. pNUITM-VK5_mdr was transferred to Escherichia coli by conjugation and simultaneously conferred high-level resistance against multiple antimicrobials, including carbapenems and tigecycline. An efflux pump inhibitor reduced TMexCD3-TOprJ3-mediated tigecycline resistance, suggesting that both tigecycline resistance factors independently and additively contribute to the high-level resistance. The plasmid had the IncX3 and IncC replicons and was estimated to be a hybrid of plasmids with different backbones. Unlike IncX3 plasmids, IncC plasmids are stably maintained in an extremely broad range of bacterial hosts in humans, animals, and the environment. Thus, the future global spread of multidrug resistance plasmids such as pNUITM-VK5_mdr poses a public health crisis. IMPORTANCE Tigecycline is important as a last-resort antimicrobial and effective against antimicrobial-resistant bacteria, such as carbapenem-producing Enterobacterales (CPE), whose infections are difficult to treat with antimicrobials. Since 2019, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, and their variants have been reported mainly from China, and it has become important to understand their epidemiological situation and detailed genetic mechanisms. In this study, we identified a bacterial isolate coharboring tet(X) and tmexCD-toprJ on the same plasmid. A Klebsiella aerogenes isolate in Vietnam carried both these tigecycline resistance genes on a transferable plasmid leading to high-level resistance to multiple clinically important antimicrobials, including carbapenem and tigecycline, and could actually transfer the plasmid to other bacteria. The spread of such a multidrug resistance plasmid among bacterial pathogens should be of great concern because there are few antimicrobials to combat bacteria that have acquired the plasmid.202134346701
155740.9961Carbapenemase-producing Klebsiella pneumoniae. The continuing emergence of infections due to multidrug resistant bacteria is a serious public health problem. Klebsiella pneumoniae, which commonly acquires resistance encoded on mobile genetic elements, including ones that encode carbapenemases, is a prime example. K. pneumoniae carrying such genetic material, including both blaKPC and genes encoding metallo-β-lactamases, have spread globally. Many carbapenemase-producing K. pneumoniae are resistant to multiple antibiotic classes beyond β-lactams, including tetracyclines, aminoglycosides, and fluoroquinolones. The optimal treatment, if any, for infections due to these organisms is unclear but, paradoxically, appears to often require the inclusion of an optimally administered carbapenem.201425343037
249650.9960Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.202032971809
250060.9959The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO.202336241158
184270.9958Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa.202032430406
251180.9958Klebsiella pneumoniae with Two Carbapenemases: Where Molecular Research Stands Now. Klebsiella pneumoniae is a significant pathogen causing various infections. Since the 1990s, carbapenem-resistant Klebsiella pneumoniae (CRKP) has threatened global health. Its main resistance mechanism is producing carbapenemases like KPC, NDM, OXA, IMP and VIM, which have different prevalent isoforms and resistance features. In China, KPC is the most common carbapenemase in CRKP, followed by metallo-β-lactamase (MBL). Alarmingly, an increasing number of K. pneumoniae strains carry two or more types of enzymes, making resistance more complex. This review summarizes the major carbapenemases carried by K. pneumoniae, their global spread, and plasmids of CRKP enzyme type combinations reported in existing studies. Common combinations such as KPC + metalloenzyme, bimetallic enzyme, and metalloenzyme + OXA-48 are discussed in detail, including their genetic environments and transfer characteristics. Whole genome sequencing technology plays a crucial role in studying drug resistance genes of K. pneumoniae, facilitating in - depth identification and analysis of bacteria, and being useful for outbreak investigation and epidemiological surveillance. In conclusion, resistance genes in K. pneumoniae are often located on mobile elements. Different resistance genes tend to be carried by specific plasmids, which have high transformation rates and little impact on host growth. In order to prevent the emergence of Klebsiella pneumoniae carrying multiple drug-resistant genes, several measures such as the rational use of antibiotics, earlier monitoring of the transmission trajectory of strains, and the prediction of the development direction of drug resistance as much as possible are particularly important in the world today.202540979938
155990.9958Resistance in gram-negative bacteria: enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world.200616735147
1558100.9958Resistance in gram-negative bacteria: Enterobacteriaceae. The emergence and spread of resistance in Enterobacteriaceae are complicating the treatment of serious nosocomial infections and threatening to create species resistant to all currently available agents. Approximately 20% of Klebsiella pneumoniae infections and 31% of Enterobacter spp infections in intensive care units in the United States now involve strains not susceptible to third-generation cephalosporins. Such resistance in K pneumoniae to third-generation cephalosporins is typically caused by the acquisition of plasmids containing genes that encode for extended-spectrum beta-lactamases (ESBLs), and these plasmids often carry other resistance genes as well. ESBL-producing K pneumoniae and Escherichia coli are now relatively common in healthcare settings and often exhibit multidrug resistance. ESBL-producing Enterobacteriaceae have now emerged in the community as well. Salmonella and other Enterobacteriaceae that cause gastroenteritis may also be ESBL producers, which is of relevance when children require treatment for invasive infections. Resistance of Enterobacter spp to third-generation cephalosporins is most typically caused by overproduction of AmpC beta-lactamases, and treatment with third-generation cephalosporins may select for AmpC-overproducing mutants. Some Enterobacter cloacae strains are now ESBL and AmpC producers, conferring resistance to both third- and fourth-generation cephalosporins. Quinolone resistance in Enterobacteriaceae is usually the result of chromosomal mutations leading to alterations in target enzymes or drug accumulation. More recently, however, plasmid-mediated quinolone resistance has been reported in K pneumoniae and E coli, associated with acquisition of the qnr gene. The vast majority of Enterobacteriaceae, including ESBL producers, remain susceptible to carbapenems, and these agents are considered preferred empiric therapy for serious Enterobacteriaceae infections. Carbapenem resistance, although rare, appears to be increasing. Particularly troublesome is the emergence of KPC-type carbapenemases in New York City. Better antibiotic stewardship and infection control are needed to prevent further spread of ESBLs and other forms of resistance in Enterobacteriaceae throughout the world.200616813978
2495110.9958Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings.201930204838
5025120.9957An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.202235782127
2492130.9957Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.202235979498
1553140.9957Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The worldwide spread of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is a critical concern for the development of therapies against multidrug-resistant bacteria. Since the 2000s, detection rates of CTX-M types ESBL-producing E. coli in the community have been high, possibly contributing to their nosocomial detection. Various factors, such as environmental sources, food animals, and international travel, accelerate the global ESBL spread in the community. The dramatic dissemination of ESBLs in the community is associated with the relatively recent emergence of CTX-M-15-producing ST131 E. coli clones, which often carry many other antibiotic resistance genes (including quinolone). The usefulness of β-lactam/β-lactamase inhibitor, particularly, piperacillin/tazobactam, has been considered as a carbapenem-sparing regimen for ESBL infections, although the global trend of AmpC β-lactamase-producing bacteria should be monitored carefully. Careful therapeutic selection and continued surveillance for the detection of multidrug-resistant bacteria are required.201829626676
1660150.9957Emergence of Plasmid-Mediated Fosfomycin-Resistance Genes among Escherichia coli Isolates, France. FosA, a glutathione S-transferase that inactivates fosfomycin, has been reported as the cause of enzymatic resistance to fosfomycin. We show that multiple lineages of FosA-producing extended spectrum β-lactamase Escherichia coli have circulated in France since 2012, potentially reducing the efficacy of fosfomycin in treating infections with antimicrobial drug-resistant gram-negative bacilli.201728820368
1877160.9957Prevalence and Traits of Mobile Colistin Resistance Gene Harbouring Isolates from Different Ecosystems in Africa. The mobile colistin resistance (mcr) gene threatens the efficacy of colistin (COL), a last-line antibiotic used in treating deadly infections. For more than six decades, COL is used in livestock around the globe, including Africa. The use of critically important antimicrobial agents, like COL, is largely unregulated in Africa, and many other factors militate against effective antimicrobial stewardship in the continent. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. In Africa, mcr-1, mcr-2, mcr-3, mcr-5, mcr-8, and mcr-9 have been detected in isolates from humans, animals, foods of animal origin, and the environment. These genes are harboured by Escherichia coli, Klebsiella, Salmonella, Citrobacter, Enterobacter, Pseudomonas, Aeromonas, Alcaligenes, and Acinetobacter baumannii isolates. Different conjugative and nonconjugative plasmids form the backbone for mcr in these isolates; however, mcr-1 and mcr-3 have also been integrated into the chromosome of some African strains. Insertion sequences (ISs) (especially ISApl1), either located upstream or downstream of mcr, class 1 integrons, and transposons, are drivers of mcr in Africa. Genes coding multi/extensive drug resistance and virulence are colocated with mcr on plasmids in African strains. Transmission of mcr to/among African strains is nonclonal. Contact with mcr-habouring reservoirs, the consumption of contaminated foods of animal/plant origin or fluid, animal-/plant-based food trade and travel serve as exportation, importation, and transmission routes of mcr gene-containing bacteria in Africa. Herein, the current status of plasmid-mediated COL resistance in humans, food-producing animals, foods of animal origin, and environment in Africa is discussed.202133553426
2519170.9957Clinical Perspective of Antimicrobial Resistance in Bacteria. Antimicrobial resistance (AMR) has become a global clinical problem in recent years. With the discovery of antibiotics, infections were not a deadly problem for clinicians as they used to be. However, worldwide AMR comes with the overuse/misuse of antibiotics and the spread of resistance is deteriorated by a multitude of mobile genetic elements and relevant resistant genes. This review provides an overview of the current situation, mechanism, epidemiology, detection methods and clinical treatment for antimicrobial resistant genes in clinical important bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), penicillin-resistant Streptococcus pneumoniae (PRSP), extended-spectrum β-lactamase-producing Enterobacteriaceae, acquired AmpC β-lactamase-producing Enterobacteriaceae, carbapenemase-producing Enterobacteriaceae (CPE), multidrug-resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa.202235264857
5021180.9957Beta-lactamases in Enterobacteriaceae infections in children. Multi-drug resistance in Gram negative bacteria, particularly in Enterobacteriaceae, is a major clinical and public health challenge. The main mechanism of resistance in Enterobacteriaceae is linked to the production of beta-lactamase hydrolysing enzymes such as extended spectrum beta-lactamases (ESBL), AmpC beta-lactamases and carbapenemases (Carbapenemase Producing Enterobacteriaceae (CPE)). ESBL and CPE resistance genes are located on plasmids, which can be transmitted between Enterobacteriaceae, facilitating their spread in hospitals and communities. These plasmids usually harbour multiple additional co-resistance genes, including to trimethoprim-sulfamethoxazole, aminoglycosides, and fluoroquinolones, making these infections challenging to treat. Asymptomatic carriage in healthy children as well as community acquired infections are increasingly reported, particularly with ESBL. Therapeutic options are limited and previously little used antimicrobials such as fosfomycin and colistin have been re-introduced in clinical practice. Paediatric experience with these agents is limited hence there is a need to further examine their clinical efficacy, dosage and toxicity in children. Antimicrobial stewardship along with strict infection prevention and control practices need to be adopted widely in order to preserve currently available antimicrobials. The future development of novel agents effective against beta-lactamases producers and their applicability in children is urgently needed to address the challenge of multi-resistant Gram negative infections.201627180312
1837190.9956Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. The emergence and spread of carbapenemase-producing bacteria, that hydolyze most β-lactams, including carbapenems, are a major concern of public health system worldwide, particularly in the Middle East area. Since the plasmids harboring resistance genes could be spread across other bacterial populations, detection of carbapenemase-producing organisms has become more problematic. These organisms produce different types of enzymes including the most prevalent types including KPC, VIM, IMP, NDM, and OXA-48. Carbapenemase producers are mostly identified among Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. This study reviewed almost all papers, which conducted in the Middle East. In order to decrease the spread of resistance, the regional cooperation has been emphasized by the Middle East countries. The highest resistance, which is mediated by KPC has been observed in Afghanistan, Saudi Arabia and Jordan followed by NDM in Pakistan and OXA in Turkey and Pakistan. It is important to mention that the spread of these types have been reported sporadically in the other countries of this area. This review described the widespread carbapenemases in the Middle East area, which have been identified in an alarming rate.201526719779