LASI - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
600700.9704Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.202134332149
247910.9665Down-regulatory effects of green coffee extract on las I and las R virulence-associated genes in Pseudomonas aeruginosa. BACKGROUND: Antibiotic resistant strains of Pseudomonas aeruginosa are the cause of Gram negative nosocomial infections especially among the immunosuppressed patients. The bacteria contains las I and las R genes that play very important roles in the pathogenesis and mechanisms of aggression. These genes can be influenced by the quorum sensing (QS) system and such mechanism is becoming clinically important worldwide. This study aimed to investigate the preventive effects of green coffee extract (GCE) on the expression of pathogenesis-related genes, las I and las R in P. aeruginosa. METHODS: A total of fifty four P. aeruginosa strains were isolated out of 100 clinical samples collected from the infectious wards in different hospitals (Tehran province) using conventional microscopic and biochemical methods. Susceptibility of the isolates to different antibiotics, GCE and chlorogenic acid were elucidated. Multiplex polymerase chain reaction (PCR) and real-time PCR were performed to detect and quantify the expression levels of las I and las R genes. The presence of chlorogenic acid in GCE was confirmed by HPLC. RESULTS: Antibiotic susceptibility tests revealed multidrug resistance among the clinical isolates of those 40 strains were resistant to ciprofloxacin (74.07%), 43 to ceftazidime (79.26%), 29 to amikacin (53.7%), 42 to ampicillin (77.77%), 17 to colistin (31.48%), 40 to gentamicin (74.77%), and 50 to piperacillin (92.59%). PCR outcomes exhibited that the frequency of las I and las R genes were 100% in resistant and sensitive strains isolated from clinical and standard strains of P. aeruginosa (ATCC 15449). Real-time PCR analyses revealed that GCE significantly prevented the expression of las I and las R genes in P. aeruginosa. GCE at concentration level as low as 2.5 mg/mL could prevent the expression of lasI and lasR genes in P. aeruginosa clinical isolates. CONCLUSION: The presence and expression levels of las I and las R genes in P. aeruginosa isolates were investigated when the bacteria was exposed to GCE. Our results tend to suggest that genes involved in pathogenesis of:Pseudomonas aeruginosa are down regulated by quorum sensing effect of chlorogenic acid and therefore GCE could be useful as an adjuvant in combating multidrug resistance strains of Pseudomonas aeruginosa.201931187452
636920.9663Association of furanone C-30 with biofilm formation & antibiotic resistance in Pseudomonas aeruginosa. BACKGROUND & OBJECTIVES: Pseudomonas aeruginosa is an opportunistic pathogen that can cause nosocomial bloodstream infections in humans. This study was aimed to explore the association of furanone C-30 with biofilm formation, quorum sensing (QS) system and antibiotic resistance in P. aeruginosa. METHODS: An in vitro model of P. aeruginosa bacterial biofilm was established using the standard P. aeruginosa strain (PAO-1). After treatment with 2.5 and 5 μg/ml of furanone C-30, the change of biofilm morphology of PAO-1 was observed, and the expression levels of QS-regulated virulence genes (lasB, rhlA and phzA2), QS receptor genes (lasR, rhlR and pqsR) as well as QS signal molecule synthase genes (lasI, rhlI, pqsE and pqsH) were determined. Besides, the AmpC expression was quantified in planktonic and mature biofilm induced by antibiotics. RESULTS: Furanone C-30 treatment significantly inhibited biofilm formation in a dose-dependent manner. With the increase of furanone C-30 concentration, the expression levels of lasB, rhlA, phzA2, pqsR, lasI, rhlI pqsE and pqsH significantly decreased in mature biofilm bacteria while the expression levels of lasR and rhlR markedly increased. The AmpC expression was significantly decreased in both planktonic and biofilm bacteria induced by imipenem and ceftazidime. INTERPRETATION & CONCLUSIONS: Furanone C-30 may inhibit biofilm formation and antibiotic resistance in P. aeruginosa through regulating QS genes. The inhibitory effect of furanone C-30 on las system appeared to be stronger than that on rhl system. Further studies need to be done with different strains of P. aeruginosa to confirm our findings.201829998876
147330.9650Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
209740.9644Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. BACKGROUND: The extended-spectrum beta-lactamase (ESBL) Klebsiella pneumoniae is one of the leading causes of health-associated infections (HAIs), whose antibiotic treatments have been severely reduced. Moreover, HAI bacteria may harbor pathogenic factors such as siderophores, enzymes, or capsules, which increase the virulence of these strains. Thus, new therapies, such as antimicrobial photodynamic inactivation (aPDI), are needed. METHOD: A collection of 118 clinical isolates of K. pneumoniae was characterized by susceptibility and virulence through the determination of the minimum inhibitory concentration (MIC) of amikacin (Amk), cefotaxime (Cfx), ceftazidime (Cfz), imipenem (Imp), meropenem (Mer), and piperacillin-tazobactam (Pip-Taz); and, by PCR, the frequency of the virulence genes K2, magA, rmpA, entB, ybtS, and allS. Susceptibility to innate immunity, such as human serum, macrophages, and polymorphonuclear cells, was tested. All the strains were tested for sensitivity to the photosensitizer PSIR-3 (4 µg/mL) in a 17 µW/cm(2) for 30 min aPDI. RESULTS: A significantly higher frequency of virulence genes in ESBL than non-ESBL bacteria was observed. The isolates of the genotype K2+, ybtS+, and allS+ display enhanced virulence, since they showed higher resistance to human serum, as well as to phagocytosis. All strains are susceptible to the aPDI with PSIR-3 decreasing viability in 3log10. The combined treatment with Cfx improved the aPDI to 6log10 for the ESBL strains. The combined treatment is synergistic, as it showed a fractional inhibitory concentration (FIC) index value of 0.15. CONCLUSIONS: The aPDI effectively inhibits clinical isolates of K. pneumoniae, including the riskier strains of ESBL-producing bacteria and the K2+, ybtS+, and allS+ genotype. The aPDI with PSIR-3 is synergistic with Cfx.202133922077
218850.9643Detection of Virulence Factors and Antibiotic Resistance Pattern of Clinical and Intensive Care Unit Environmental Isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is a gram-negative non-glucose fermenting aerobic bacteria and an opportunistic pathogen in humans and animals. The present study was carried out to investigate the distribution of virulence factors and antibiotic resistance properties of P. aeruginosa isolated from patients and intensive care unit (ICU) environment. MATERIAL AND METHODS: A total of 116 P. aeruginosa isolated from patients and ICU environment were collected from Besat hospital in Hamadan, the West of Iran. P. aeruginosa isolates were analyzed based on the presence of the virulence factors encoding genes included exoA, exoS, exoU, and algD using polymerase chain reaction (PCR). Antimicrobial susceptibility test was performed using a disk diffusion method. RESULTS: The results showed the prevalence of exoA 33 (56.9%), exoS 21 (36.20%), exoU 37 (63.8%), and algD 35 (60.34%) genes in ICU environment P. aeruginosa strains and exo A 23 (39.25%), exoS 25 (43.1%), exoU 40(68.98%), and algD 25 (43.1%) genes in clinical isolates of P. aeruginosa. High resistance levels of the clinical and ICU environment isolate to ampicillinsulbactam (100%), were also observed. CONCLUSION: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections.202031889501
220860.9640Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran. BACKGROUND AND OBJECTIVES: Increasing antimicrobial resistance among Acinetobacter baumannii (A. baumannii) strains poses a significant challenge, particularly in intensive care units (ICUs) where these bacteria are common causes of hospital infections. Biofilm production is recognized as a key mechanism contributing to this resistance. This study aims to explore the relationship between biofilm production, the presence of biofilm-associated genes, and antibiotic resistance patterns in A. baumannii isolates obtained from ICU patients. MATERIALS AND METHODS: We collected 100 A. baumannii isolates from ICU patients at Nemazee Hospital in Shiraz, Iran. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, and biofilm production potential was assessed through the tissue culture plate (TCP) method. Additionally, we investigated eleven biofilm-related genes (ompA, bap, csuE, epsA, bla (per-1) , bfmS, pgaB, csgA, fimH, ptk, and kpsMII) in all isolates using polymerase chain reaction (PCR). The REP-PCR technique was utilized to analyze the genetic relatedness of the isolates (Fig. 4). RESULTS: All isolates displayed multi-drug resistance, with the highest resistance rates observed against ceftazidime, cefotaxime, and trimethoprim/sulfamethoxazole (100%). Gentamicin and amikacin showed the lowest resistance rates at 70% and 84%, respectively. A total of 98% of the isolates were capable of biofilm production, with 32% categorized as strong biofilm producers. The most frequently detected biofilm-associated genes included csuE (99%), bfmS (98%), ompA (97%), and pgaB (89%). CONCLUSION: Biofilm production significantly contributes to the prevalence of multi-drug resistant A. baumannii strains. It is essential to implement effective antimicrobial stewardship and develop innovative anti-biofilm strategies to address this global health issue.202540330064
247870.9638Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The aim of the present study was to evaluate the imipenem-resistant mechanism via the outer membrane protein (OMP) OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. The Pseudomonas aeruginosa was clinically separated and validated by VITEK-2 full-automatic bacteria analyzer. Drug resistance, sensitive antibiotics and minimum inhibitory concentration (MIC) were tested using the drug sensitivity analysis system. The phenotype positive strains of MBL genes were screened using the Kirby-Bauer diffusion method by adding metal ion-chelating agent EDTA on the imipenem susceptibility paper. IMP-1, VIM-1 and SPM metaloenzyme genes were tested by polymerase chain reaction (PCR)-telomeric repeat amplification protocol (TRAP). The OMP OprD2 genes were tested by PCR-TRAP, and the protein expression was tested using western blot analysis. The location of OMP OprD2 was confirmed using the sodium salicylate inhibition test. The results showed that 80 portions (40%) of MBL-positive strains were screened out of 200 specimens. Imipenem-resistant Pseudomonas aeruginosa (IRPA) and MIC values were significantly higher than quality control bacteria and control bacteria (P<0.05). A total of 35 cases with IMP-1 positive, 20 with VIM-1 positive, 16 with SPM positive, 5 with 2 positive genes and 4 with 3 positive genes were screened among MBL positive strains. A total of 150 portions (75%) of OprD2 deficiencies were screened from 200 specimens. The standard strains and sensitive strains showed OprD2 protein bands at 45 kDa while no OprD2 protein bands appeared in OprD2 deficiency strains. It was in accordance with gene detection. In conclusion, OMP OprD2 deficiency and MBL phenotype positivity may be important mechanisms of IRPA.201627882088
234780.9635Multiple drug resistance of Listeria monocytogenes isolated from aborted women by using serological and molecular techniques in Diwaniyah city/Iraq. BACKGROUND AND OBJECTIVES: The study was sought to detect the effect of Listeria monocytogenes on pregnant Iraqi women at Al-Diwaniya hospitals and determination of virulence genes and antimicrobial susceptibility of isolates. MATERIALS AND METHODS: 360 specimens including blood, urine, vaginal and endocervical were collected from 90 patients with spontaneous abortions. Blood samples were displayed to immunological study and remaining specimens were subjected to bacteriological diagnosis. PCR was used to determine the virulence factors and antimicrobial resistance genes. RESULTS: Fifteen positive samples (16.6%) of patients and thirteen isolates (14.5%) from patients were recognized based on ELISA and PCR assay respectively. The general isolation of L. monocytogenes strains in cases of abortive women was 13/270 (4.8%). L. monocytogenes strains were highly virulent because of presence of virulence factors associated genes, namely actA, hlyA, plcA and prfA in all strains. Multiple drug resistance (MAR) index values of 15.4% of isolates were >0.2. CONCLUSION: It is necessary for conducting susceptibility testing and to select the suitable antibiotics and avoid the effects of these bacteria in pregnant women.202032994901
235390.9632Contribution of icaADBC genes in biofilm production ability of Staphylococcus aureus clinical isolates collected from hospitalized patients at a burn center in North of Iran. INTRODUCTION: The pathogenicity of Staphylococcus aureus is significantly attributed to its capacity to produce biofilms, which bolster bacterial resistance against antibiotics and host immune responses. This study aimed to explore the involvement of icaABCD genes in biofilm formation ability of S. aureus clinical isolates. MATERIALS AND METHODS: One hundred clinical S. aureus isolates were collected from hospitalized patients at a burn center in North of Iran. The isolates were identified using standard biochemical tests and confirmed by the presence of the nuc gene. Antibiotic susceptibility profiles were determined through the disk agar diffusion method. Biofilm formation capacity was determined using microtiter plate assay. PCR test was conducted to detect the presence of icaABCD genes. RESULTS: Penicillin exhibited the highest resistance rate (94%), while vancomycin was most effective antibiotic with 6% resistance. Besides, 32% of the isolates demonstrated as multidrug resistant (MDR) and 29% were Methicillin-resistant S. aureus (MRSA). Notably, 89% of the isolates were identified as biofilm produces, while 54 (60.67%), 28 (31.46%), and 7 (7.86%) isolates exhibited strong, moderate, and weakly biofilm production ability, respectively. PCR results revealed a prevalence of 90%, 92%, 92%, and 94% for the icaA, icaB, icaC, and icaD genes, respectively. Intriguingly, the MDR isolates exhibited a 100% prevalence of these genes. Similarly, 96.55%, 89.65%, 89.65% and 96.55% of the MRSA isolates were carrying the icaA, icaB, icaC, and icaD genes, respectively. CONCLUSION: This study revealed a noteworthy prevalence of biofilm-producing strains of S. aureus. High prevalence of icaADBC genes as well as highlighted capacity of the biofilm formation in MRSA and MDR strains exhibited a potential correlation between biofilm and antibiotic resistance patterns. Given the enhanced resilience of bacteria within biofilms against antibiotics, addressing biofilm production is imperative alongside antibiotic treatments for effective control and eradication of infections.202540382552
2197100.9631Antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia at a tertiary hospital in Zambia. Background: Bloodstream infections and antimicrobial resistance cause global increases in morbidity and mortality. Aim: We evaluated the antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia in humans. Materials & methods: We conducted a retrospective cross-sectional study at the University Teaching Hospitals in Lusaka, Zambia, using Laboratory Information Systems. Results: The commonest isolated bacteria associated with sepsis were Klebsiella pneumoniae. The distribution of bacteria associated with bacteremia in different wards and departments pneumonia. The distribution of bacteria associated with bacteremia in different wards and departments at University Teaching Hospitals was were statistically significant (χ2 = 1211.518; p < 0.001). Conclusion:K. pneumoniae, Escherichia coli, Pantoea agglomerans and Enterococcus species have developed high resistance levels against ampicillin, cefotaxime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole and a very low resistance levels against imipenem and Amikacin.202033315486
2352110.9631Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866
1254120.9629Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed.202031692060
2187130.9629Multicentre investigation of pathogenic bacteria and antibiotic resistance genes in Chinese patients with acute exacerbation of chronic obstructive pulmonary disease. OBJECTIVE: A prospective observational study to investigate the distribution and antimicrobial resistance of pathogenic bacteria in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in Beijing, China. METHODS: Patients with AECOPD were recruited from 11 general hospitals. Sputum specimens were cultured and bacteria identified. Antibiotic susceptibility was determined for each isolate, and presence of antibiotic resistance genes was evaluated using polymerase chain reaction. RESULTS: Pathogenic bacteria were isolated from 109/318 patients (34.28%); 124 isolates of 22 pathogenic bacterial species were identified, including Klebsiella pneumoniae (16.94%), Pseudomonas aeruginosa (16.94%), Acinetobacter baumannii (11.29%), Streptococcus pneumoniae (8.87%), and Staphylococcus aureus (7.26%). S. aureus was sensitive to tigecycline, teicoplanin, vancomycin and linezolid but resistant to penicillin and levofloxacin. K.pneumoniae, P. aeruginosa, A. baumannii and E. coli were susceptible to amikacin and cefoperazone. CONCLUSIONS: K. pneumoniae and P. aeruginosa are the most common pathogenic bacteria in AECOPD cases in Beijing, China. Our antibiotic resistance findings may be helpful in selecting antibiotic therapy.201526152913
1476140.9629Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy.202032179139
2196150.9628Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
1455160.9628Resistance to bacterial infection, complication occurring after cardiac surgery. To analyze the occurrence of resistant bacterial infection in patients undergoing cardiac surgery hospitalized in the surgical specialty hospital, in Erbil city, Iraq. A prospective study was done on a total of 138 patients operated and hospitalized in an intensive care unit and surgical wards. Bacterial isolates identification was done according to cultural characteristics, microscopic examination, some biochemical tests, analytic Profile Index 20E& API Staph, confirmed with VITEK® 2 compact system (BioMérieux). Antimicrobial susceptibility for disc diffusion tested to 17 antimicrobial agents. Resistance isolates were confirmed phenotypically for carbapenemase by Rapidec Carba NP Test (bioMe´rieux SA, Marcy-l'E´toile, France) for ESBLs producers by ESBL screening test VITEK 2 system. Molecularly blaIMP blaTEM, blaKPC, AmpC and blaCTX-M were detected by PCR. In 134 patients, 28.3% of patients got infected post-operatively. The most frequent source of isolation was from ICU patients (75%). Isolated bacteria included gram-positive 29 (54.7%) and gram-negative bacteria 24 (45.3%). Most frequently:  Staphylococcus aureus (24.4%), each of pseudomonas aeroginosa, Klebsiella pneumonia (15.1%), Streptococcus spp. (11.3%), Escherichia coli (9.4%). Whereas included Coagulase Negative Staphylococci species (CoNS) (13.2%) and Enterococci species (5.7) Statistical analysis showed significantly higher sensitive isolates as compared with resistance isolates. Resistance to Carbapenems calss was 18.9% and Cephalosporins class 41.5% of isolates. The antimicrobial resistance pattern indicated that MDR bacterial isolates (81.1%) were widespread. Of the 34 phenotypically ESBL positive isolates, the ESBL genes (AmpC, blaCTX-M, and blaTEM) were amplified in 7(20.6), 6(17.6) and 6(17.6) isolates respectively. Out of 8 K. pneumonia (37.5%) harboring both blaAmpC and bla-CTX-M genes, while 6(75%) carries blaTEM. The blaCTX-M gene was found in only 1 (12.5%) out of 8 isolates of P. aeruginosa. While blaAmpC genotyping revealed that 1(7.7%) out of 13 Staph. aureus isolates were harboring it. Finally, 3(60%) out of 5 E. coli isolates harboring both AmpC and bla-CTX-M genes. Cardiac surgery patients wound show increasingly emerging strains of ESBL-producing gram-negative bacteria K. pneumonia, P. aeruginosa and E. coli especially patients prolonged in the intensive care unit.202034174972
1257170.9628Antimicrobial Susceptibility Pattern in the Bacteria Isolated from Surgical Site Infection: Emphasis on Staphylococcus Aureus; Yasuj City, Southwest Iran. BACKGROUND: Surgical site infections (SSIs) in surgical wards remains the most common cause of postoperative complications and realistically is the third most common origin of healthcare-related conditions. Staphylococcus aureus is undoubtedly the most common bacteria causing SSIs. The current study aimed at investigating the antimicrobial susceptibility pattern in bacteria isolated from SSIs, evaluation of tetracycline resistance genes, and SCCmec typing in S. aureus isolates isolated from patients with SSIs from 2018 to 2019 in Yasuj, Kohgiluyeh, and Boyer-Ahmad Province, Iran. METHODS: This study diligently investigated 240 potential patients. Antimicrobial susceptibility testing was performed properly by the disk diffusion method. For the final confirmation of isolated bacteria, PCR was used. The presence of tet genes and SCCmec typing was carried out by multiplex PCR. RESULTS: The results showed that the most common isolated pathogens included S. aureus, E. coli, P. aeruginosa, Coagulase-negative Staphylococci, and K. pneumonia in 58.8%, 19.8%, 9.2%, 6.8% and 5.4% of cases, respectively. The majority of the Gram positive isolates were resistant against penicillin (86%) and Gram negative were resistant against ciprofloxacin (75.6%). In isolates of Staphylococcus aureus, the mecA gene was detected in 63.6% of isolates. The predominant SCCmec types were type III (59.1%) and type I (18.4%). The tetK and tetM genes were detected in 80.7% and 71.9% of the S. aureus isolates, respectively. There was a statistically significant difference between tet genes (tetK and tetM) from the viewpoint of resistance to tetracycline (p = 0.024). CONCLUSIONS: According to the results of the current study, it is recommended to administer vancomycin, amikacin, and imipenem in Yasuj to treat SSIs.202133616327
2135180.9628Prevalence of multidrug-resistant bacteria associated with polymicrobial infections. BACKGROUND: Wounds remain the most important cause of postoperative mortality and morbidity and generate considerable additional social and healthcare costs. Most wounds are caused by various coliforms, Enterococcus fecalis, Proteus sp., and multidrug resistant Staphylococcus aureus. Wound is one of the leading cause of infections in the under developed and developing countries than developed nations. METHODS: A total of 43 samples associated with bacteremia and wound infection were collected. Biochemical characterization and culture characteristics of the drug resistant isolates were studied using MacConkey agar, blood agar and mannitol-salt agar. Antibiotic susceptibility analysis of the isolated strains was performed by disc diffusion method using various antibiotics. Prevalence of dug resistance among bacteria isolated from the wound was studied. The ability of Beta lactamase antibiotic producing bacterial strains were analyzed. RESULTS: A total of 168 bacterial strains were isolated showed high resistant towards ampicillin (89%), ciprofloxacin (90.8), cefepine (90.5), piperacillin (91.8), oxacillin (92.5), and imipenem (96.5). The isolated bacterial strains showed monobacterial as well as polybacterial growth on the surface of the wound. The isolated bacterial strains revealed 89% sensitivity against norfloxacin and 94.9 sensitivity against vancomycin. About 26% of bacterial strains degraded quinolones, whereas only 14% clinical isolates showed their ability to degrade aminoglycosides. A total of 27% bacteria degraded tetracycline and 51% of isolates degraded carbapenems compounds. Interestingly, E. faecalis was resistant against antibiotics such as, Oxacillin, Nalidic acid, Ofloxacin, Erythromycin, Norfloxacin, Ciprofloxacin, Ampicillin, Tetracycline, Cefepine, Amikacin, Cefurooxime, Vancomycin, Piperacillin, Imipenem and Gentamycin. Moreover, Proteus species was resistant against certain numbers of antibiotics namely, Ampicillin, Piperacillin, Oxacillin, Nalidic acid, Tetracycline, Erythromycin, Cefurooxime, Nitrofurantoin, Vancomycin and Imipenem. CONCLUSIONS: The isolated bacterial strains were resistant against various drugs including vancomycin. Staphylococci, and E. faecalisis strains showed resistance against various classes of antibiotics.202134801434
8442190.9627Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.202133904608