# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6836 | 0 | 0.9975 | Microbiome and antibiotic resistome in household dust from Beijing, China. We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance. | 2020 | 32248025 |
| 6862 | 1 | 0.9975 | Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats. | 2023 | 37263036 |
| 6835 | 2 | 0.9974 | Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics. | 2025 | 39488451 |
| 7081 | 3 | 0.9974 | Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters. | 2020 | 32806354 |
| 6824 | 4 | 0.9974 | Anthropogenic gene dissemination in Tibetan Plateau rivers: sewage-driven spread, environmental selection, and microeukaryotic inter-trophic driving factors. The spread of anthropogenic genes, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs), and antibiotic-resistant bacteria (ARBs), is a growing public health concern. However, the role of anthropogenic activities in the dissemination of these genes and bacteria in Tibetan Plateau rivers is still unclear. In this study, we analyzed 138 metagenomic samples from water and sediment across nine Tibetan rivers, along with sewage samples from 21 wastewater treatment plants (WWTPs), at both the gene and contig levels, to investigate the spread of the sewage-enriched genes and their bacterial hosts (contigs) in Tibetan rivers. Overall, sewage input was positively correlated with increased the abundance of an average 56 % and 17 % of detected genes in water and sediment, respectively. However, FEAST source tracking analysis revealed that the overall contribution of sewage across all rivers was significantly lower than that of water and sediment. Additionally, sewage's impact varied across rivers, with the Yarlung Zangbo, the largest river, exhibiting limited influence despite receiving inputs from smaller rivers and WWTPs. Neutral community model (NCM) suggested that neutral processes and negative selection predominantly governed the spread of majority of highly abundant sewage-enriched genes and contigs, suggesting restricted environmental spread. In contrast, a subset of genes over-represented relative to neutral expectations (above-neutral prediction) showed lower overall abundance but higher richness, potentially reflecting selection that favor their retention in certain downstream environments. Furthermore, sewage-enriched genes and contigs in water, regardless of their community assembly processes, were linked to microbial interaction modules dominated by microeukaryotic groups associated with sewage, including consumer protists (ciliate), human parasites (e.g., Naegleria), algae, and fungi. These interactions may facilitate the dissemination of antimicrobial resistance in aquatic environments, though this pattern was less pronounced in sediment. | 2025 | 40446767 |
| 7285 | 5 | 0.9973 | Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations. | 2018 | 29765365 |
| 6863 | 6 | 0.9973 | Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Lakes are one of the natural reservoirs of antibiotic resistance genes (ARGs) in environments. Long retention times in lakes potentially allow ARGs to persist and may create increased opportunities for the emergence of resistant pathogens. In this study, we investigated the prevalence, source and dissemination risk of ARGs in the sediments of a typical urban lake, Lake Tai (China) which has been a drastic example of water pollution with eutrophication in the world due to its proliferated cyanobacterial blooms. High-throughput profilings of ARGs in the sediments of Lake Tai were characterized with metagenomic assembly, and were compared with those in other global lakes from Australia, Canada, Indonesia, Rwanda and the United States of America. The hosts of ARGs in the sediments of Lake Tai were explored based on the taxonomic annotation of ARG-carrying contigs and network analysis, and a novel recently-discovered crAssphage was employed for source tracking of resistance bacteria. Meanwhile, the potential resistome risk was identified by projecting the co-occurrence of acquired ARGs, mobile genetic elements (MGEs) and human bacterial pathogens into a three-dimensional exposure space. Results showed 321 ARG subtypes belonging to 21 ARG types were detected in the sediments of Lake Tai, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone, mupirocin and trimethoprim resistance genes. Relatively, the ARG levels in the sediments of Lake Tai were significantly higher than those in other global lakes. Source tracking showed the coverages of detected crAssphage in the sediments of Lake Tai were positively correlated with the total ARG coverage, suggesting the contribution of human fecal contamination to the prevalence of ARGs in this lake. It should be noted that the co-occurrence ratio of ARGs, MGEs and human pathogens in the sediments of Lake Tai was higher than that in other global lakes, likely indicating a higher risk for the resistance dissemination in the China's third largest freshwater lake. | 2019 | 30928850 |
| 7082 | 7 | 0.9973 | Catchment-scale export of antibiotic resistance genes and bacteria from an agricultural watershed in central Iowa. Antibiotics are administered to livestock in animal feeding operations (AFOs) for the control, prevention, and treatment of disease. Manure from antibiotic treated livestock contains unmetabolized antibiotics that provide selective pressure on bacteria, facilitating the expression of anti-microbial resistance (AMR). Manure application on row crops is an agronomic practice used by growers to meet crop nutrient needs; however, it can be a source of AMR to the soil and water environment. This study in central Iowa aims to directly compare AMR indicators in outlet runoff from two adjacent (221 to 229 ha) manured and non-manured catchments (manure comparison), and among three catchments (600 to 804 ha) with manure influence, no known manure application (control), and urban influences (mixed land use comparison). Monitored AMR indicators included antibiotic resistance genes (ARGs) ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin), and tylosin and tetracycline resistant enterococci bacteria. Results of the manure comparison showed significantly higher (p<0.05) tetracycline and tylosin resistant bacteria from the catchment with manure application in 2017, but no differences in 2018, possibly due to changes in antibiotic use resulting from the Veterinary Feed Directive. Moreover, the ARG analysis indicated a larger diversity of ARGs at the manure amended catchment. The mixed land use comparison showed the manure amended catchment had significantly higher (p<0.05) tetracycline resistant bacteria in 2017 and significantly higher tylosin resistant bacteria in 2017 and 2018 than the urban influenced catchment. The urban influenced catchment had significantly higher ermB concentrations in both sampling years, however the manure applied catchment runoff consisted of higher relative abundance of total ARGs. Additionally, both catchments showed higher AMR indicators compared to the control catchment. This study identifies four ARGs that might be specific to AMR as a result of agricultural sources (tetM, tetW, sul1, sul2) and optimal for use in watershed scale monitoring studies for tracking resistance in the environment. | 2020 | 31923233 |
| 3174 | 8 | 0.9973 | Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river. | 2023 | 36773904 |
| 6867 | 9 | 0.9973 | Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria. | 2024 | 38452676 |
| 3173 | 10 | 0.9973 | Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health. | 2025 | 40633655 |
| 3177 | 11 | 0.9973 | Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread. | 2024 | 38960118 |
| 7352 | 12 | 0.9973 | Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. ONE-SENTENCE SUMMARY: Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer. | 2016 | 26736055 |
| 7164 | 13 | 0.9973 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 3074 | 14 | 0.9973 | Metagenomic analysis of microbial communities and antibiotic resistant genes in the Tijuana river, and potential sources. The Tijuana River is a transborder river that flows northwest across the border from Baja California in Mexico into Southern California before discharging into the Pacific Ocean. The river is frequently contaminated with raw sewage due to inadequate sanitary infrastructure in Tijuana. To assess the type and degree of microbial contamination, water samples were collected monthly from a near-border and an estuarine site from August 2020 until May 2021. A portion of each sample was used for epifluorescent microscopy and DNA was extracted directly from the rest for shotgun metagenomic sequencing. After sequence quality checking and processing, we used the rapid taxonomic identifier tool Kaiju to characterize the microbial diversity of the metagenomes and matched the sequences against the Comprehensive Antibiotic Resistance Database (CARD) to examine antimicrobial resistance genes (ARGs). Bacterial and viral-like particle (VLP) abundance was consistently higher in the near-border samples than in the estuarine samples, while alpha diversity (within sample biodiversity) was higher in estuarine samples. Beta-diversity analysis found clear compositional separation between samples from the two sites, and the near-border samples were more dissimilar to one another than were the estuarine sites. Near-border samples were dominated by fecal-associated bacteria and bacteria associated with sewage sludge, while estuarine sites were dominated by marine bacteria. ARGs were more abundant at the near-border site, but were also readily detectable in the estuarine samples, and the most abundant ARGs had multi-resistance to beta-lactam antibiotics. SourceTracker analysis identified human feces and sewage sludge to be the largest contributors to the near-border samples, while marine waters dominated estuarine samples except for two sewage overflow dates with high fecal contamination. Overall, our research determined human sewage microbes to be common in the Tijuana River, and the prevalence of ARGs confirms the importance of planned infrastructure treatment upgrades for environmental health. | 2024 | 38043772 |
| 7127 | 15 | 0.9973 | Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA. Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM. Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB (P=0.0007) and tetM gene concentrations (P=0.0425). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT, tetM, erm(35), ermF, ermB, str, aadD, and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations. | 2023 | 39816658 |
| 7218 | 16 | 0.9973 | Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. Wastewater treatment plants (WWTPs) are the hotspots for the spread of antibiotic resistance genes (ARGs) into the environment. Nevertheless, a comprehensive assessment of the city-level and short-term daily (inter-day) variations of ARG profiles in the whole process (influent-INF, activated sludge-AS and effluent-EF) of WWTPs is still lacking. Here, 285 ARGs and ten mobile gene elements were monitored in seven WWTPs in Xiamen for seven days via high-throughput qPCR. The average daily load of ARGs to WWTPs was about 1.32 × 10(20) copies/d, and a total of 1.56 × 10(18) copies/d was discharged to the environment across the entire city. Stochastic processes were the main force determining the assembly of ARG communities during sampling campaign, with their relative importance ranked in the order of INF > EFF > AS. There're little daily variations in ARG richness, abundance, β-diversity composition as well as assembly mechanisms. The results of SourceTracker, variation partitioning analysis, and hierarchical partitioning analysis indicated that bacteria and ARGs from upstream treatment processes played an increasingly dominant role in shaping ARG communities in AS and EFF, respectively, suggesting the importance of mass-immigration of bacteria and ARGs from the source on ARG transport in wastewater treatment processes. This emphasizes the need to revise the way we mitigate ARG contamination but focus on the source of ARGs in urban wastewater. | 2024 | 37914134 |
| 7224 | 17 | 0.9973 | Bioavailability of potentially toxic elements influences antibiotic resistance gene and mobile genetic element abundances in urban and rural soils. Antibiotic resistance genes (ARGs) that can encode resistance traits in bacteria are found across the environment. While it is often difficult to discern their origin, their prevalence and diversity depends on many factors, one of which is their exposure to potentially toxic elements (PTE, i.e., metals and metalloids) in soils. Here, we investigated how ambient ARGs and mobile genetic elements (MGEs) relate to the relative bioavailability of different PTEs (total versus exchangeable and carbonate-bound PTE) in rural and urban soils in northeast England. The average relative abundances of ARGs in rural sites varied over a 3-log range (7.24 × 10(-7) to 1.0 × 10(-4) genes/16S rRNA), and relative ARG abundances in urban sites varied by four orders of magnitude (1.75 × 10(-6) to 2.85 × 10(-2) genes/16S rRNA). While beta-lactam and aminoglycoside resistance genes dominated rural and urban sites, respectively, non-specific ARGs, also called multidrug-resistance genes, were significantly more abundant in urban sites (p < 0.05). Urban sites also had higher concentrations of total and exchangeable forms of PTE than rural sites, whereas rural sites were higher in carbonate-bound forms. Significant positive Spearman correlations between PTEs, ARGs and MGEs were apparent, especially with bioavailable PTE fractions and at urban sites. This study found significant positive correlations between ARGs and beryllium (Be), which has not previously been reported. Overall, our results show that PTE bioavailability is important in explaining the relative selection of ARGs in soil settings and must be considered in future co-selection and ARG exposure studies. | 2022 | 35872194 |
| 6866 | 18 | 0.9973 | Deciphering the antibiotic resistome in stratified source water reservoirs in China: Distribution, risk, and ecological drive. The proliferation and dissemination of antibiotic resistance genes (ARGs) in source water reservoirs may pose a threat to human health. This study investigated the antibiotic resistance in stratified reservoirs in China across different seasons and spatial locations. In total, 120 ARG subtypes belonging to 15 ARG types were detected with an abundance ranging from 171.06 to 793.71 × /Gb. Multidrug, tetracycline, aminoglycoside, and bacitracin resistance genes were dominant in the reservoirs. The abundance and transfer potential of ARGs were notably higher, especially during the stratified period, with markedly elevated levels in the bottom layer compared to the surface layer. Metagenomic assembly yielded 1357 ARG-carrying contigs, belonging to 83 resistant bacterial species, of which 13 were identified as human pathogen bacteria (HPB). HPB hosts (Sphingomonas sp., Burkholderiales sp., and Ralstonia sp., etc.) were super carriers of ARGs. Genes including ompR, bacA, golS, and ugd carried on HPB plasmids exhibited higher abundance in the water, warranting attention to the risk of resistance transmission. Environmental pressures have caused a shift in the assembly mechanism of ARGs, transitioning from a random process in surface water to a deterministic process in bottom water. The results of this study will deepen people's understanding of the ARG risk in stratified reservoirs. | 2025 | 39673943 |
| 3267 | 19 | 0.9973 | Characterization of antibiotic resistance across Earth's microbial genomes. Widespread antibiotic resistance across Earth's habitats has become a critical health concern. However, large-scale investigation on the distribution of antibiotic resistance genes (ARGs) in the microbiomes from most types of ecosystem is still lacking. In this study, we provide a comprehensive characterization of ARGs for 52,515 microbial genomes covering various Earth's ecosystems, and conduct the risk assessment for ARG-carrying species based on further identification of mobile genetic elements (MGEs) and virulence factor genes (VFGs). We identify a total of 6159 ARG-carrying metagenome-assembled genomes (ACMs), and most of them are recovered from human gut and city subway. Our results show that efflux pump is the most common mechanism for bacteria to acquire multidrug resistance genes in Earth's microbiomes. Enterobacteriaceae species are the largest hosts of ARGs, accounting for 14% of total ACMs with 64% of the total ARG hits. Most of ARG-carrying species are unique in the different ecosystem categories, while 33 potential background ARGs are commonly shared by all ecosystem categories. We then detect 36 high-risk ARGs that likely threat public health in all ACMs. Based on ranking the importance of ARG-carrying species in the different ecosystem categories, several bacterial taxa such as Escherichia coli, Enterococcus faecalis, and Pseudomonas_A stutzeri are recognized as priority species for surveillance and control. Overall, our study gives a broad view of ARG-host associations in the environments. | 2022 | 34774941 |