# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3498 | 0 | 0.9931 | Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters. | 2021 | 33786766 |
| 6991 | 1 | 0.9931 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 7167 | 2 | 0.9930 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 6385 | 3 | 0.9927 | Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors. | 2022 | 36306620 |
| 7133 | 4 | 0.9927 | Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research. | 2017 | 28192677 |
| 3481 | 5 | 0.9927 | Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake. | 2016 | 27418176 |
| 6994 | 6 | 0.9926 | Seasonal variations in antibiotic resistance genes in estuarine sediments and the driving mechanisms. Estuary sediments are chemically contaminated by adjacent coastal industrial cities, but the impact of organic pollutants on antibiotic resistance genes (ARGs) in estuarine sediments is unknown. We comprehensively analyzed the complex interactions between chemical pollutants (heavy metals and organic pollutants), mobile genetic elements (MGEs), and ARGs in estuarine sediments during various seasons. The results indicate that under the effects of the chemically polluted river water, the number of different estuarine sediment ARGs increased by 76.9%-92.3% in summer and 5.9%-35.3% in winter, and the abundance of these ARGs increased by 29-5195 times in summer and 48-239 times in winter. The abundance of sediment ARGs in distinct estuaries showed different seasonal trends. Seasonal changes had a greater impact on the abundance of estuarine sediment ARGs than on their diversity. The diversity of estuarine sediment ARGs was positively correlated with the chemical pollution levels. Furthermore, chemical pollution was positively correlated with MGEs, and MGEs were correlated with ARG abundance. These results indicate that ARGs are enriched in bacteria via horizontal gene transfer triggered by chemical pollution, promoting multi-antibiotic resistance in estuarine sediment bacteria. These findings have implications for our understanding of the distribution and propagation of ARGs in chemically polluted estuarine sediments. | 2020 | 31520936 |
| 6863 | 7 | 0.9926 | Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Lakes are one of the natural reservoirs of antibiotic resistance genes (ARGs) in environments. Long retention times in lakes potentially allow ARGs to persist and may create increased opportunities for the emergence of resistant pathogens. In this study, we investigated the prevalence, source and dissemination risk of ARGs in the sediments of a typical urban lake, Lake Tai (China) which has been a drastic example of water pollution with eutrophication in the world due to its proliferated cyanobacterial blooms. High-throughput profilings of ARGs in the sediments of Lake Tai were characterized with metagenomic assembly, and were compared with those in other global lakes from Australia, Canada, Indonesia, Rwanda and the United States of America. The hosts of ARGs in the sediments of Lake Tai were explored based on the taxonomic annotation of ARG-carrying contigs and network analysis, and a novel recently-discovered crAssphage was employed for source tracking of resistance bacteria. Meanwhile, the potential resistome risk was identified by projecting the co-occurrence of acquired ARGs, mobile genetic elements (MGEs) and human bacterial pathogens into a three-dimensional exposure space. Results showed 321 ARG subtypes belonging to 21 ARG types were detected in the sediments of Lake Tai, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone, mupirocin and trimethoprim resistance genes. Relatively, the ARG levels in the sediments of Lake Tai were significantly higher than those in other global lakes. Source tracking showed the coverages of detected crAssphage in the sediments of Lake Tai were positively correlated with the total ARG coverage, suggesting the contribution of human fecal contamination to the prevalence of ARGs in this lake. It should be noted that the co-occurrence ratio of ARGs, MGEs and human pathogens in the sediments of Lake Tai was higher than that in other global lakes, likely indicating a higher risk for the resistance dissemination in the China's third largest freshwater lake. | 2019 | 30928850 |
| 6384 | 8 | 0.9925 | Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. Coastal tidal flats are intersection zones between terrestrial and marine environments and are considered repositories of pollutants from anthropogenic activities (e.g., fishery and aquaculture). Specifically, the prevalence of antibiotics and antibiotic resistance genes (ARGs) in coastal aquaculture environments pose critical threats to estuarine ecosystems. However, the contribution of aquaculture to the occurrence and abundance of ARGs and community assemblies has not been fully explored in tidal flat zones. Thus, we investigated ARGs profiles, ARG-carrying host bacteria, and their associate microbial community in the Dongtai and Sheyang tidal flat aquaculture regions of Jiangsu, China using metagenomic assembly methods. The antibiotic concentrations in the sediment samples ranged from nd to 35.50 ng/g dw, and the antibiotic pollution in the Dongtai tidal flat was more severe than in the Sheyang tidal flats. Metagenomic assembly indicated that a total of 247 ARG subtypes associated with ARG 33 types were characterized across all samples and their abundance in the Dongtai region exceeded that in the Sheyang region. Meanwhile, 21 bacteria in the tidal flat aquaculture were identified as ARG-carrying pathogens, including Escherichia coli, Vibrio fluvialis, and Staphylococcus aureus. Using neutral and null modeling analysis to determine the community ecological processes, the results revealed bacterial and ARG communities were generally dominated by stochastic and deterministic processes, respectively. The above results suggested that aquaculture pollution was contributed to shape ARG profiles in tidal flats. The observed deterministic processes affecting the ARG community in tidal flat aquaculture also provides an effective foundation to control the risks of environmental antibiotic resistance through reducing aquaculture antibiotic usage. | 2022 | 35421458 |
| 7156 | 9 | 0.9925 | Effect of antibiotics, antibiotic-resistant bacteria, and extracellular antibiotic resistance genes on the fate of ARGs in marine sediments. Surface runoff is a prevalent source via which emerging pollutants (i.e., antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs)) enter marine sediments. However, few studies have investigated the effect of emerging pollutants on the fate of ARGs in marine sediments. Therefore, three systems were established to measure the relative abundances of four common ARGs (i.e., bla(TEM), tetA, tetC, and aphA) and the integron-integrase gene (intI1) after exposure to emerging pollutants in marine sediments from the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea in China. The results revealed that antibiotic exposure could decrease the relative abundance of most ARGs (including bla(TEM), tetA, and tetC) in these marine sediment samples. The exceptions were the relative abundance of bla(TEM) in the Bohai Sea marine sediments under ampicillin exposure and tetC in the Yellow Sea marine sediments under tetracycline exposure, which increased significantly. Among marine sediments challenged with ARB, the relative abundance of aphA in all four marine sediments displayed a decreasing trend, whereas the abundances of bla(TEM) and tetA in the marine sediments from the Bohai Sea and the South China Sea showed an increasing trend. The relative abundance of tetA in the marine sediments from the Yellow Sea and the East China Sea dropped markedly when exposed to extracellular ARG (eARG). Significant changes in bla(TEM) abundance were observed in the four marine sediments under eARG exposure. Gene aphA abundance showed the same trend as the intI1 abundance. IntI1 showed a decreasing trend under the exposure of antibiotic, ARB, or eARG, apart from the East and the South China Sea marine sediments under ampicillin conditions and the South China Sea marine sediments under RP4 plasmid condition. These findings suggest that dosing with emerging pollutants does not increase ARG abundance in marine sediments. | 2023 | 37245825 |
| 7155 | 10 | 0.9925 | Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. Lakes in arid northwestern China, as the main pollutant-holding water bodies in the typical ecologically fragile areas, are facing the unknown risk of exposure to antibiotics and antibiotic resistance genes (ARGs). In this study, five ARGs and one mobile genetic element (intI1) and their relation with antibiotics, microbial communities and water quality were investigated in Ebinur Lake Basin, a typical salt-lake of China. Quantitative PCR analysis indicated that ARGs decreasing order in both surface water and sediment was sul1 >sul2 >tetW>ermB>qnrS, which means sulfonamide resistance genes were the main pollution ARGs. Macrolide antibiotics were the predominant antibiotics in the surface water and sediment in winter, while sulfonamides and quinolones accounted for a high proportion in summer. There was a non-corresponding relationship between ARGs and antibiotics. Moreover, the relationship between ARGs and microbial communities were defined. Sulfonamide resistance genes were carried by a greater diversity of potential host bacteria (76 genera) than other ARGs (9 genera). And their positive correlation with intI1 (p < 0.05) which promotes their migration and provides possibility of their co-occurrence in bacterial populations (e.g., Nitrospira). Bacterial genera were the main driver of ARGs distribution pattern in highly saline lake sediment. Environmental factors like salinity, total nitrogen and organic matter could have a certain influence on the occurrence of ARGs by affecting microorganisms. The results systematically show the distribution and propagation characteristics of ARGs in typical inland salt-lakes in China, and preliminarily explored the relationship between ARGs and antibiotics, resistance genes and microorganisms in lakes in ecologically fragile areas. | 2021 | 34171688 |
| 7164 | 11 | 0.9925 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 3506 | 12 | 0.9925 | Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. Extensive and improper overuse of antibiotics resulted in the prevalence of antibiotic resistance genes (ARGs). As the typical semi-enclosed continental shelf sea, the Bohai Sea has been considered as one of the most polluted marine areas in China. However, no comprehensive investigation on the spatial distribution of ARGs in sediments from the Bohai Sea has been reported. A large-scale sampling was performed in the Bohai Sea areas. The abundances of ARGs (6 classes, 29 ARG subtypes), class 1 integron-integrase gene (intI1), hmt-DNA and 16S rRNA gene were evaluated. IntI1 was detected with higher abundances in coastal areas ranging from 2.8 × 10(5) to 2.5 × 10(8) copies/g. The total ARGs abundances varied over 3 orders of magnitude in different sampling sites with the maximum at 4.9 × 10(8) copies/g. Sulfonamides resistance genes were ubiquitous and abundant with the abundances ranging from 5.7 × 10(4) to 1.8 × 10(7) copies/g, and quinolones resistance genes varied greatly in different samples. The contour map demonstrated that ARGs were more abundant in the Laizhou Bay, the south of Bohai Bay and the eastern of central sea basin. Most of the target ARG subtypes were detected with 100% detection frequencies. The genes of sul1, sul2 and tetX were detected with both higher absolute and relative abundance, while the abundance of β-lactams ARG subtypes was lower. Principal component analysis (PCA) and redundancy analysis (RDA) indicated that no significant differences in the ARGs abundance existed in different samples, and the sediment qualities played important roles in the distribution of ARGs. Bacterial communities were investigated and 768 strong and significant connections between ARGs and bacteria were identified. The possible hosts of ARGs were revealed by network analysis with higher relative abundance in coastal areas than the sea. | 2020 | 32325606 |
| 3500 | 13 | 0.9924 | Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Anthropogenic activities especially water pollution can affect the diversity and composition of microbial communities and promote the spread of antibiotic resistance genes (ARGs). In this study, water samples and guppies (Poecilia reticulata) were sampled from six sampling sites along the Uberabinha River in southeastern Brazil, both microbial communities and ARGs of surface waters and intestinal microbiota of guppies (Poecilia reticulata) were detected. According to the results of 16S rRNA amplicon sequencing, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were dominant phyla in both water and intestinal microbiota, but the abundance of putative pathogens was higher at heavily polluted sites. Up to 83% of bacteria in intestinal microbiota originated from water microbiota; this proportion was relatively higher in less polluted compared to polluted environments. ARGs providing resistance of tetracyclines and quinolones were dominant in both water and gut microbiota. The relative abundances of class I integrons and ARGs were as high as 1.74 × 10(-1)/16S rRNA copies and 3.61 × 10(-1)/16S rRNA copies, respectively, at heavily polluted sites. Correlation analysis suggests that integrons and bacteria play key roles in explaining the widespread occurrence of ARGs in the surface, but not in intestinal microbiota. We could rule out the class I integrons a potential intermediary bridge for ARGs between both types of microbiomes. Our results highlight the tight link in microbial communities and ARGs between ambient microbiota of stream ecosystems and intestinal microbiota of fish. Our study could have far-reaching consequences for fisheries and consumer safety and calls for investigations of gut microbiota of target species of both commercial fisheries and recreational (hobby) angling. | 2021 | 33497859 |
| 7219 | 14 | 0.9924 | Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 10(5) to 1.6 × 10(6) copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 10(5) copies/m(3), which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs. | 2024 | 39276744 |
| 6992 | 15 | 0.9923 | Antibiotic resistance genes (ARGs) and their eco-environmental response in the Bohai Sea sediments. Antibiotic resistance genes (ARGs) are an important class of pollutants in the environment. This study investigated the characteristics and ecological effects of ARGs in the Bohai Sea sediments. The results showed that ARGs are widely distributed, and exhibit significant spatial and subtype variations, with absolute abundance following the decreasing order of Liaodong Bay, Laizhou Bay, Bohai Bay, and Bohai Strait. Tetracycline ARGs dominated, comprising 50 % to 62 % of all ARGs, with tetM having the highest abundance at 1.43 × 10(7) copies/g. Symbiotic network analysis revealed that the phyla Deinococcota, Dadabacteria were serve as the primary likely host of ARGs. The ARGs have a wide range of potential hosts, and bacteria often carry multiple ARGs, enhancing the mobility and ecological niche adaptation of ARGs. This study will provide an important reference for assessing ARGs pollution in semi-enclosed seas. | 2024 | 39303552 |
| 7087 | 16 | 0.9923 | Antibiotic resistance in shellfish and major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Shellfish-growing areas in marine environments are affected by pollutants that mainly originate from land, including streams, domestic wastewater, and the effluents of wastewater treatment plants (WWTPs), which may function as reservoirs of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The objective of this study was to identify the occurrence and distribution of antibiotic resistance at five oyster sampling sites and 11 major inland pollution sources in the drainage basin of Kamak Bay, Republic of Korea. Culture-based methods were used to estimate the diversity and abundance of antibiotic-resistant Escherichia coli strains isolated from oysters and major inland pollution sources. The percentages of ARB and multiple antibiotic resistance index values were significantly high in discharge water from small fishing villages without WWTPs. However, the percentages of antibiotic-resistant E. coli isolates from oysters were low, as there was no impact from major inland pollutants. Fourteen ARGs were also quantified from oysters and major inland pollution sources. Although most ARGs except for quinolones were widely distributed in domestic wastewater discharge and effluent from WWTPs, macrolide resistance genes (ermB and msrA) were detected mainly from oysters in Kamak Bay. This study will aid in tracking the sources of antibiotic contamination in shellfish to determine the correlation between shellfish and inland pollution sources. | 2021 | 34226964 |
| 3482 | 17 | 0.9923 | Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. | 2018 | 29751438 |
| 6993 | 18 | 0.9923 | Invisible threat: Marine suspended particles mediate delayed decay of antibiotic resistome in coastal effluents. Suspended particles are recognized as hotspots of antibiotic resistance genes (ARGs) in coastal waters. However, the dynamics of ARGs associated with suspended particles during sewage discharge into coastal environments remain poorly understood. This study simulated sewage influx into coastal waters using microcosms to investigate the decay dynamics of particle-associated (PA) and free-living (FL) ARGs. Results showed that four ARGs, including two sulfonamide resistance genes (sul1 and sul2) and two tetracycline resistance genes (tetB and tetG), exhibited significantly lower decay rates in the PA fraction than in the FL fraction. Specifically, bacterial decay (k = 0.96 day⁻¹) and horizontal gene transfer decay (k = 0.62 day⁻¹) were both slower in the PA fraction compared to the FL fraction (1.56 day⁻¹ and 1.98 day⁻¹, respectively). These results indicated that suspended particles slow down the decay of ARGs. Microbial community analysis revealed approximately 80 % similarity between sewage and seawater at day 0, but a marked increase in unique bacterial genera and unknown-source taxa was observed at day 15. These results suggest that sewage discharge rapidly alters the composition of native seawater communities. Furthermore, suspended particles harbored higher abundances of unknown-source bacteria and displayed stronger bacterial community interactions than the surrounding water. These findings advance our understanding of ARG persistence and microbial community dynamics, offering critical insights for understanding ARGs dissemination from wastewater discharge. | 2025 | 40373395 |
| 7154 | 19 | 0.9922 | Deciphering the natural and anthropogenic drivers on the fate and risk of antibiotics and antibiotic resistance genes (ARGs) in a typical river-estuary system, China. This study conducts an in-depth assessment of the spatial distribution, ecological risks, and correlations among 12 antibiotics, antibiotic resistance genes (ARGs), and dominant microorganisms in a representative river-estuary system, classified by land use and hydrodynamic conditions. Sulfonamides and quinolones were identified as the major contaminants in surface waters, with aquaculture and healthcare wastewater responsible for over 80 % of the antibiotic load. Contrasting seasonal patterns were observed between freshwater (wet season: 215 ng/L, dry season: 99.9 ng/L) and tidal estuaries (wet season: 45.9 ng/L, dry season: 121 ng/L), attributed to antibiotic transport from terrestrial sources or coastal aquaculture areas. The estimated annual antibiotic influx into Jiaozhou Bay was 70.4 kg/year, posing a considerable threat to aquatic algae and disrupting the stability of aquatic food chain. BugBase predictions suggested that antibiotics in the environment suppressed bacteria characterized by biofilm formation (FB) and the presence of mobile elements (CME). However, ARG transmission was likely to drive the spread of CME, FB, and stress-tolerant (OST) bacteria within microbial communities. The significant positive correlations observed between sulfamethoxazole and 63 microbial genera indicate a broad distribution of microbial resistance, which exacerbates the potential for ARG accumulation and dissemination across both the bay and the Yellow Sea. | 2024 | 39357363 |