LACKING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
63900.9975A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.202337071007
936110.9975Evolutionary consequences of bacterial resistance to a flagellotropic phage. Bacteria often rapidly evolve resistance to bacteriophages (phages) by mutating or suppressing the phage-receptors, the factors that phages first target to initiate infection. Flagellotropic phages infect bacteria by initially binding to the flagellum. Since motility is an important fitness factor that allows bacteria to efficiently explore their environment, losing flagellar function to evade infection by flagellotropic phages represents a crucial trade-off. In this study, we investigated the evolutionary responses of Escherichia coli when exposed to the flagellotropic phage χ. Using an experimental evolution approach, E. coli cells were repeatedly subjected to environments rich in phage χ but selective for motility. Unlike traditional well-mixed cultures, we employed swim-plate assays to simulate spatial confinement and promote motility. Whole genome sequencing of evolved populations revealed early emergence of non-motile, χ-resistant mutants with mutations disrupting motility-related genes. Motile mutants emerged in later passages, possessing mutations in the flagellin gene fliC. Swim-plate assays showed a diverse range of motility among these mutants, with some displaying slower, and others faster, expansion speeds compared to the ancestral strain. Single-cell tracking experiments indicated an increased tumble bias in χ-resistant mutants, suggesting an adaptive response involving altered flagellar rotation. Our findings demonstrate that motility can undergo trade-offs and trade-ups with phage resistance, shedding light on the complex evolutionary dynamics between motile bacteria and flagellotropic phages.202540654869
960320.9975Resistance signatures manifested in early drug response across cancer types and species. Aim: Growing evidence points to non-genetic mechanisms underlying long-term resistance to cancer therapies. These mechanisms involve pre-existing or therapy-induced transcriptional cell states that confer resistance. However, the relationship between early transcriptional responses to treatment and the eventual emergence of resistant states remains poorly understood. Furthermore, it is unclear whether such early resistance-associated transcriptional responses are evolutionarily conserved. In this study, we examine the similarity between early transcriptional responses and long-term resistant states, assess their clinical relevance, and explore their evolutionary conservation across species. Methods: We integrated datasets on early drug responses and long-term resistance from multiple cancer cell lines, bacteria, and yeast to identify early transcriptional changes predictive of long-term resistance and assess their evolutionary conservation. Using genome-wide CRISPR-Cas9 knockout screens, we evaluated the impact of genes associated with resistant transcriptional states on drug sensitivity. Clinical datasets were analyzed to explore the prognostic value of the identified resistance-associated gene signatures. Results: We found that transcriptional states observed in drug-naive cells and shortly after treatment overlapped with those seen in fully resistant populations. Some of these shared features appear to be evolutionarily conserved. Knockout of genes marking resistant states sensitized ovarian cancer cells to Prexasertib. Moreover, early resistance gene signatures effectively distinguished therapy responders from non-responders in multiple clinical cancer trials and differentiated premalignant breast lesions that progressed to malignancy from those that remained benign. Conclusion: Early cellular transcriptional responses to therapy exhibit key similarities to fully resistant states across different drugs, cancer types, and species. Gene signatures defining these early resistance states have prognostic value in clinical settings.202541019980
893430.9974A tradeoff between bacteriophage resistance and bacterial motility is mediated by the Rcs phosphorelay in Escherichia coli. Across the tree of life, pleiotropy is thought to constrain adaptation through evolutionary tradeoffs. However, few examples of pleiotropy exist that are well explained at the genetic level, especially for pleiotropy that is mediated by multiple genes. Here, we describe a set of pleiotropic mutations that mediate two key fitness components in bacteria: parasite resistance and motility. We subjected Escherichia coli to strong selection by phage U136B to obtain 27 independent mucoid mutants. Mucoidy is a phenotype that results from excess exopolysaccharide and can act as a barrier against viral infection but can also interfere with other cellular functions. We quantified the mutants' phage resistance using efficiency of plaquing assays and swimming motility using swim agar plates, and we sequenced the complete genomes of all mutants to identify mucoid-causing mutations. Increased phage resistance co-occurred with decreased motility. This relationship was mediated by highly parallel (27/27) mutations to the Rcs phosphorelay pathway, which senses membrane stress to regulate exopolysaccharide production. Together, these results provide an empirical example of a pleiotropic relationship between two traits with intermediate genetic complexity.202439194382
634240.9974Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.201829439964
376750.9974Transposon insertion sequencing reveals novel hypermutator genes in Acinetobacter baumannii. Mutation rates in bacteria are an important determinant of adaptation to new environments and success in different niches. In some bacterial pathogens, "hypermutator" variants-most often associated with mutations in components of the DNA mismatch repair system-are associated with increased antibiotic resistance and poorer patient outcomes. We report the serendipitous finding of novel hypermutator genes in Acinetobacter baumannii through genome-scale mutant fitness screening. Exposure of a transposon insertion mutant library of A. baumannii to extended weak antibiotic selection resulted in selection for mutations that directly increased fitness as expected, but also revealed genes where transposon insertion indirectly increased fitness due to elevated general mutation rates. Three novel hypermutator genes were confirmed in A. baumannii: nusB, encoding a transcription antiterminator; ABUW_0208, encoding a hypothetical protein; and ABUW_2121, which encodes a sulfite transporter. We find selection for hypermutator variants in transposon insertion sequencing (TIS) data sets from diverse bacteria under various antibiotic treatments. Our results expand the range of biological functions linked to hypermutator phenotypes in bacteria and provide a workflow for the identification of putative hypermutators by TIS.IMPORTANCEAll organisms have the capacity for evolution through mutation. Bacteria with high mutation rates have a survival advantage in some stressful environments because they generate beneficial mutations more frequently. "Hypermutators" are bacterial strains that carry gene inactivations that increase general mutation rates. These variants are important in chronic infections, as their increased genetic diversity allows higher drug resistance and prolonged survival in the host. Only a few different hypermutator genes are known, and there is no high-throughput method for their identification. We have made the serendipitous finding that hypermutator genes can be identified by genome-wide mutant fitness screening under specific selection conditions. We have identified novel hypermutator alleles in the notorious hospital pathogen Acinetobacter baumannii and show that hypermutator variants can be detected in screens of a wide range of pathogens.202540576344
634160.9974Monitoring lineages of growing and dividing bacteria reveals an inducible memory of mar operon expression. In Gram negative bacteria, the multiple antibiotic resistance or mar operon, is known to control the expression of multi-drug efflux genes that protect bacteria from a wide range of drugs. As many different chemical compounds can induce this operon, identifying the parameters that govern the dynamics of its induction is crucial to better characterize the processes of tolerance and resistance. Most experiments have assumed that the properties of the mar transcriptional network can be inferred from population measurements. However, measurements from an asynchronous population of cells can mask underlying phenotypic variations of single cells. We monitored the activity of the mar promoter in single Escherichia coli cells in linear micro-colonies and established that the response to a steady level of inducer was most heterogeneous within individual colonies for an intermediate value of inducer. Specifically, sub-lineages defined by contiguous daughter-cells exhibited similar promoter activity, whereas activity was greatly variable between different sub-lineages. Specific sub-trees of uniform promoter activity persisted over several generations. Statistical analyses of the lineages suggest that the presence of these sub-trees is the signature of an inducible memory of the promoter state that is transmitted from mother to daughter cells. This single-cell study reveals that the degree of epigenetic inheritance changes as a function of inducer concentration, suggesting that phenotypic inheritance may be an inducible phenotype.202337485524
899370.9974Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures. Novel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins. Drug-resistance is commonly associated with a fitness cost due to the impact of resistance-conferring mutations on protein function and/or stability. These costs are expected to prohibit the selection of drug-resistant mutations at low drug pressures. Using laboratory evolution of rifampicin resistance in Escherichia coli, we show that when exposed intermittently to low concentration (0.1 × minimal inhibitory concentration) of rifampicin, the evolution of canonical drug resistance was indeed unfavorable. Instead, these bacterial populations adapted by evolving into small-colony variants that displayed enhanced pellicle-forming ability. This shift in lifestyle from planktonic to pellicle-like was necessary for enhanced fitness at low drug pressures, and was mediated by the genetic activation of the fim operon promoter, which allowed expression of type I fimbriae. Upon continued low drug exposure, these bacteria evolved exclusively into high-level drug-resistant strains through mutations at a limited set of loci within the rifampicin-resistance determining region of the rpoB gene. We show that our results are explained by mutation-specific epistasis, resulting in differential impact of lifestyle switching on the competitive fitness of different rpoB mutations. Thus, lifestyle-alterations that are selected at low selection pressures have the potential to modify the fitness effects of mutations, change the genetic structure, and affect the ultimate fate of evolving populations.201930670539
960580.9973Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.201527623410
891190.9973Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.202438359828
8892100.9973Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum. Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (colibacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nutritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum-active and inactive-involved metabolic genes. In particular, the serum metabolic response is coordinated by three transcriptional regulators, Fur, BasR, and CysB. Fur alone was responsible for more than 80% of the serum-induced transcriptional response. Consistent with its role as a major serum response regulator, deletion of Fur renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in colisepticemia and virulence. IMPORTANCE: Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains have emerged as major pathogens, especially in community- and hospital-acquired infections. These bacteria cause a large spectrum of syndromes, the most serious of which is septicemia, a condition with a high mortality rate. These bacterial strains are characterized by high resistance to serum, otherwise highly toxic to most bacteria. To understand the basis of this resistance, we carried out system-wide analyses of the response of ExPEC strains to serum by using proteomics and deep RNA sequencing. The major changes in gene expression induced by exposure to serum involved metabolic genes, not necessarily implicated in relation to virulence. One metabolic regulator-Fur-involved in iron metabolism was responsible for more than 80% of the serum-induced response, and its deletion renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in virulence.201425118243
8946110.9973Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. Although fosfomycin is an old antibiotic, it has resurfaced with particular interest. The antibiotic is still effective against many pathogens that are resistant to other commonly used antibiotics. We have found that fosfomycin resistance of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by the bacterial two-component signal transduction system CpxAR. A cpxA mutant lacking its phosphatase activity results in constitutive activation of its cognate response regulator, CpxR, and fosfomycin resistance. We have shown that fosfomycin resistance requires CpxR because deletion of the cpxR gene in the cpxA mutant restores fosfomycin sensitivity. We have also shown that CpxR directly represses the expression of two genes, glpT and uhpT, which encode transporters that cotransport fosfomycin with their native substrates glycerol-3-phosphate and glucose-6-phosphate, and repression of these genes leads to a decrease in fosfomycin transport into the cpxA mutant. However, the cpxA mutant had an impaired growth phenotype when cultured with glycerol-3-phosphate or glucose-6-phosphate as a sole carbon substrate and was outcompeted by the parent strain, even in nutrient-rich medium. This suggests a trade-off between fosfomycin resistance and the biological fitness associated with carbon substrate uptake. We propose a role for the CpxAR system in the reversible control of fosfomycin resistance. This may be a beneficial strategy for bacteria to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin.201424163343
8198120.9973New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, "per-pool" screening method that we have developed. Our data showed that in addition to genes involved in physiological adaptation and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site--probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability.201424675805
9759130.9973Rapid emergence of resistance to broad-spectrum direct antimicrobial activity of avibactam. Avibactam (AVI) is a diazabicyclooctane (DBO) β-lactamase inhibitor used clinically in combination with ceftazidime. At concentrations higher than those typically achieved in vivo, it also has broad-spectrum direct antibacterial activity against Enterobacterales strains, including metallo-β-lactamase-producing isolates, mediated by inhibition of penicillin-binding protein 2 (PBP2). This activity has some mechanistic similarities to that of more potent novel DBOs (zidebactam and nacubactam) in late clinical development. We found that resistance to AVI emerged readily, with a mutation frequency of 2 × 10(-6) to 8 × 10(-5). Whole-genome sequencing of resistant isolates revealed a heterogeneous mutational target that permitted bacterial survival and replication despite PBP2 inhibition, in line with prior studies of PBP2-targeting drugs. While such mutations are believed to act by upregulating the bacterial stringent response, we found a similarly high mutation frequency in bacteria deficient in components of the stringent response, although we observed a different set of mutations in these strains. Although avibactam-resistant strains had increased lag time, suggesting a fitness cost that might render them less problematic in clinical infections, there was no statistically significant difference in growth rates between susceptible and resistant strains. The finding of rapid emergence of resistance to avibactam as the result of a large and complex mutational target adds to our understanding of resistance to PBP2-targeting drugs and has potential implications for novel DBOs with potent direct antibacterial activity, which are being developed with the goal of expanding cell wall-active treatment options for multidrug-resistant gram-negative infections.IMPORTANCEAvibactam (AVI) is the first in a class of novel β-lactamase inhibitor antibiotics called diazabicyclooctanes (DBOs). In addition to its ability to inhibit bacterial β-lactamase enzymes that can destroy β-lactam antibiotics, we found that AVI had direct antibacterial activity, at concentrations higher than those used clinically, against even highly multidrug-resistant bacteria. This activity is the result of inhibition of the bacterial enzyme penicillin-binding protein 2 (PBP2). Resistance to other drugs that inhibit PBP2 occurs through mutations that involve upregulation of the bacterial "stringent response" to stress. We found that bacteria developed resistance to AVI at a high rate, as a result of mutations in stringent response genes. We also found that bacteria with impairments in the stringent response could still develop resistance to AVI through different mutations. Our findings indicate the importance of studying how resistance will emerge to newer, more potent DBOs in development and early clinical use.202540503840
306140.9973Overexpression of l,d-Transpeptidase A Induces Dispensability of Rod Complex in Escherichia coli. Antimicrobial resistance (AMR) is a significant global threat, and the presence of resistance-determinant genes is one of the major driving forces behind it. The bacterial rod complex is an essential set of proteins that is crucial for cell survival due to its role in cell wall biogenesis and shape maintenance. Therefore, these proteins offer excellent potential as drug targets; however, compensatory mutations in nontarget genes render this complex nonessential. The MreB protein of this complex is an actin homologue that rotates along the longitudinal axis of the cell to provide rod shape to the bacteria. In this study, using chemical-chemical interaction profiling and FtsZ suppression assay, we identified the MreB targeting activity of IITR07865, a previously discovered small molecule in our lab. Escherichia coli suppressors against IITR07865 revealed mutations in two cell division-associated genes, min C and pal, that have not been previously implicated in rod complex essentiality. IITR07865 resistant mutants were found to inactivate and render the rod complex nonessential, making the rod complex inhibitors ineffective. Further, through transcriptome analysis, we reveal the primary cause of resistance in suppressor strains to be the overexpression of an l, d-transpeptidase A enzyme, which is involved in peptidoglycan and Braun's lipoprotein cross-linking. Our results demonstrate a novel mechanism of resistance development in rod-shaped Gram-negative bacterial pathogen E. coli involved in UTIs where mecillinam, a clinically used antibiotic that targets rod complex, is a drug of choice.202439412350
9607150.9973Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.201728217741
773160.9973Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.202133972351
308170.9973Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology. Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilisIMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.201728461449
4707180.9973Comparative transcriptome analyses of magainin I-susceptible and -resistant Escherichia coli strains. Antimicrobial peptides (AMPs) have attracted considerable attention because of their multiple and complex mechanisms of action toward resistant bacteria. However, reports have increasingly highlighted how bacteria can escape AMP administration. Here, the molecular mechanisms involved in Escherichia coli resistance to magainin I were investigated through comparative transcriptomics. Sub-inhibitory concentrations of magainin I were used to generate four experimental groups, including magainin I-susceptible E. coli, in the absence (C) and presence of magainin I (CM); and magainin I-resistant E. coli in the absence (R) and presence of magainin I (RM). The total RNA from each sample was extracted; cDNA libraries were constructed and further submitted for Illumina MiSeq sequencing. After RNA-seq data pre-processing and functional annotation, a total of 103 differentially expressed genes (DEGs) were identified, mainly related to bacterial metabolism. Moreover, down-regulation of cell motility and chaperone-related genes was observed in CM and RM, whereas cell communication, acid tolerance and multidrug efflux pump genes (ABC transporter, major facilitator and resistance-nodulation cell division superfamilies) were up-regulated in these same groups. DEGs from the C and R groups are related to basal levels of expression of homeostasis-related genes compared to CM and RM, suggesting that the presence of magainin I is required to change the transcriptomics panel in both C and R E. coli strains. These findings show the complexity of E. coli resistance to magainin I through the rearrangement of several metabolic pathways involved in bacterial physiology and drug response, also providing information on the development of novel antimicrobial strategies targeting resistance-related transcripts and proteins herein described.201830277857
4515190.9973Novel Conserved Genotypes Correspond to Antibiotic Resistance Phenotypes of E. coli Clinical Isolates. Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. SNPs that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid-encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for antibiotic resistance.201323824211