KURUNEGALENSIS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
246800.9227Characterization of Pseudomonas kurunegalensis by Whole-Genome Sequencing from a Clinical Sample: New Challenges in Identification. Backgoround: The genus Pseudomonas encompasses metabolically versatile bacteria widely distributed in diverse environments, including clinical settings. Among these, Pseudomonas kurunegalensis is a recently described environmental species with limited clinical characterization. Objective and Methods: In this study, we report the genomic and phenotypic characterization of a P. kurunegalensis isolate, Pam1317368, recovered from a catheterized urine sample of a post-renal transplant patient without symptoms of urinary tract infection. Initial identification by MALDI-TOF MS misclassified the isolate as Pseudomonas monteilii. Whole-genome sequencing and average nucleotide identity (ANI) analysis (≥95%) confirmed its identity as P. kurunegalensis. The methodology included genomic DNA extraction, Illumina sequencing, genome assembly, ANI calculation, antimicrobial susceptibility testing, resistance gene identification and phylogenetic analysis. Results: Antimicrobial susceptibility testing revealed multidrug resistance, including carbapenem resistance mediated by the metallo-β-lactamase gene VIM-2. Additional resistance determinants included genes conferring resistance to fluoroquinolones and aminoglycosides. Phylogenetic analysis placed the isolate within the P. kurunegalensis clade, closely related to environmental strains. Conclusions: Although the clinical significance of this finding remains unclear, the presence of clinically relevant resistance genes in an environmental Pseudomonas species isolated from a human sample highlights the value of genomic surveillance and accurate species-level identification in clinical microbiology.202540700237
138510.9191GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.202235255126
245220.9188Worrying levels of antimicrobial resistance in Gram-negative bacteria isolated from cell phones and uniforms of Peruvian intensive care unit workers. BACKGROUND: Healthcare worker (HCW) uniforms and cell phones are involved in pathogen transmission. This study aimed to characterize pathogenic microorganism isolates from HCW uniforms and cell phones. METHODS: Gram-negative microorganisms were recovered from HCW uniforms and cell phones. Antimicrobial susceptibility and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases were determined. RESULTS: Escherichia coli was the most prevalent microorganism. Overall, high levels of resistance to cephalosporins, quinolones, co-trimoxazole and colistin were found. ESBL were mainly related to blaCTX-M-15 and blaSHV- genes. Carbapenem-resistant isolates presented as blaKPC or blaNDM. CONCLUSIONS: High levels of antimicrobial resistance, including colistin, were detected. Therefore, strategies are urgently needed to prevent bacterial dissemination.202234993550
138730.9187Whole-Genome Characterisation of ESBL-Producing E. coli Isolated from Drinking Water and Dog Faeces from Rural Andean Households in Peru. E. coli that produce extended-spectrum β-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK(®)2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST(1) heat-stable toxin. Both genomes carried ESBL genes (bla(EC-15), bla(CTX-M-8), and bla(CTX-M-55)). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities.202235625336
520640.9178Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus). OBJECTIVES: The incidence of multidrug-resistant bacteria in wildlife animals has been investigated to improve our knowledge of the spread of clinically relevant antimicrobial resistance genes. The aim of this study was to report the first draft genome sequence of an extensively drug-resistant (XDR) Pseudomonas aeruginosa ST644 isolate recovered from a Magellanic penguin with a footpad infection (bumblefoot) undergoing rehabilitation process. METHODS: The genome was sequenced on an Illumina NextSeq(®) platform using 150-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.10, and the whole genome sequence was evaluated using bioinformatics approaches from the Center of Genomic Epidemiology, whereas an in-house method (mapping of raw whole genome sequence reads) was used to identify chromosomal point mutations. RESULTS: The genome size was calculated at 6436450bp, with 6357 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracyclines, quinolones and fosfomycin; in addition, mutations in the genes gyrA (Thr83Ile), parC (Ser87Leu), phoQ (Arg61His) and pmrB (Tyr345His), conferring resistance to quinolones and polymyxins, respectively, were confirmed. CONCLUSION: This draft genome sequence can provide useful information for comparative genomic analysis regarding the dissemination of clinically significant antibiotic resistance genes and XDR bacterial species at the human-animal interface.201829277728
519350.9178Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.202438128408
95860.9175Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both bla(SHV) and bla(CTX-M) ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including bla(SHV), tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities.202439613891
140270.9175Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. BACKGROUND: Accurate detection of β-lactam resistance genes in bloodstream infections is critical for guiding antimicrobial therapy. This study evaluates the Alifax Gram-negative resistance (GNR) microchip assay for detecting β-lactam resistance genes directly from positive blood cultures (PBCs) for Gram-negative (GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. METHODS: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested for bla (KPC), bla (VIM), bla (NDM), bla (IMP), bla (OXA-23)-like, bla (OXA-48)-like, bla (SHV)-ESBL, bla (CTX-M-1/9) group, and bla (CMY-2)-like genes using the GNR microchip assay. Whole-genome sequencing (WGS) served as the reference assay for simulated samples and, selectively, for clinical samples. The bioMérieux BioFire Blood Culture Identification 2 (BCID2) panel assay was used as a comparator for clinical samples. RESULTS: The GNR microchip assay correctly identified 203 (99.5%) of 204 β-lactam resistance genes in simulated samples. One sample tested false negative for a bla (SHV)-ESBL gene but true positive for a bla (KPC) gene. In clinical samples, GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in both assays. Additionally, the GNR assay detected bla (CMY-2) -like (n=6), bla (OXA-23)-like (n=5), and bla (SHV)-ESBL (n=2), which are not targeted by BCID2, all confirmed by WGS. In two β-lactam-resistant P. aeruginosa samples but negative by the GNR assay, WGS confirmed the absence of acquired β-lactam resistance genes, suggesting alternative resistance mechanisms. CONCLUSION: The GNR microchip assay demonstrated high concordance and broader β-lactam resistance gene coverage compared to BCID2, supporting its potential role in routine diagnostics. Further validation in larger, prospective studies is warranted.202540529307
199080.9171Genomic Analysis of Aeromonas veronii C198, a Novel Mcr-3.41-Harboring Isolate from a Patient with Septicemia in Thailand. The resistance of Gram-negative bacteria to colistin, mediated by plasmid-borne mcr genes, is an emerging public health concern. The complete genome sequence (4.55 Mb) of a clinical isolate of Aeromonas veronii biovar veronii obtained from a patient with septicemia was determined using short-read and long-read platforms. This isolate (C198) was found to harbor a novel mcr-3 gene, designated mcr-3.41. Isolate C198 revealed adjacent mcr-3.41 and mcr-3-like genes. It contained one chromosome and two plasmids, both of which encoded a RepB replication protein. Other antimicrobial resistance genes, including bla(cphA3), bla(OXA-12), tetA, rsmA, and adeF, were also present. Isolate C198 was resistant to amoxicillin-clavulanate, ampicillin-sulbactam and tetracycline, and showed intermediate resistance to trimethoprim-sulfamethoxazole. The isolate was susceptible to piperacillin-tazobactam, carbapenem, third-generation cephalosporins, fluoroquinolones, chloramphenicol, and aminoglycosides. Putative virulence genes in the C198 genome encoded type II, III, and VI secretion systems; type IV Aeromonas pili; and type I fimbria, flagella, hemagglutinin, aerolysin, and hemolysins. Multilocus sequence typing revealed a novel sequence type (ST), ST720 for C198. Phylogenetic analysis of the single nucleotide polymorphisms in C198 demonstrated that the strain was closely related to A. veronii 17ISAe. The present study provides insights into the genomic characteristics of human A. veronii isolates.202033317051
519990.9167Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. BACKGROUND: Chryseobacterium indologenes is an emerging opportunistic pathogen in hospital-acquired infection, which is intrinsically resistant to most antimicrobial agents against gram-negative bacteria. In the purpose of extending our understanding of the resistance mechanism of C. indologenes, we sequenced and analyzed the genome of an extensively antibiotic resistant C. indologenes strain, isolated from a Chinese prostate cancer patient. We also investigated the presence of antibiotic resistance genes, particularly metallo-β-lactamase (MBL) genes, and performed a comparative genomic analysis with other Chryseobacterium species. RESULTS: 16s rRNA sequencing indicated the isolate belongs to C. indologenes. We assembled a total of 1095M bp clean-filtered reads into 171 contigs by de novo assembly. The draft genome of C. indologenes J31 consisted of 5,830,795 bp with a GC content of 36.9 %. RAST analysis revealed the genome contained 5196 coding sequences (CDSs), 28 rRNAs, 81 tRNAs and 114 pseudogenes. We detected 90 antibiotic resistance genes from different drug classes in the whole genome. Notably, a novel bla(IND) allele bla(IND-16) was identified, which shared 99 % identity with bla(IND-8) and bla(IND-10). By comparing strain J31 genome to the closely four related neighbors in the genus Chryseobacterium, we identified 2634 conserved genes, and 1449 unique genes. CONCLUSIONS: In this study, we described the whole genome sequence of C. indologenes strain J31. Numerous resistance determinants were detected in the genome and might be responsible for the extensively antibiotic resistance of this strain. Comparative genomic analysis revealed the presence of considerable strain-specific genes which would contribute to the distinctive characteristics of strain J31. Our study provides the insight of the multidrug resistance mechanism in genus Chryseobacterium.201627785154
1395100.9166Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-ξ, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum β-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.201830457551
845110.9166Variants of β-lactamase-encoding genes are disseminated by multiple genetically distinct lineages of bloodstream Escherichia coli. BACKGROUND: Escherichia coli is a major cause of bloodstream infections (BSI), which can lead to life-threatening organ dysfunction. We determined the genomic characteristics of E. coli implicated in BSI and the spread of antimicrobial resistance (AMR). METHODS: We carried out in vitro antimicrobial susceptibility testing and whole genome sequencing of 557 E. coli isolates recovered from BSI at Dartmouth-Hitchcock Medical Center, USA. RESULTS: We identify at least 119 previously recognized sequence types (ST), of which five STs (ST69, ST73, ST95, ST127, ST131) altogether represent 50% of the bloodstream E. coli population. Of the 142 distinct serotypes detected, the most common are O25:H4 and O1:H7. A total of 62 acquired genes are associated with resistance to at least 13 antimicrobial classes. These include the β-lactamase gene families bla(TEM), bla(SHV), bla(OXA), bla(CTX-M), and bla(CMY), which together can be further classified into 15 variants, including seven genes encoding extended-spectrum β-lactamases (ESBL). A total of 210/557 genomes carry at least one bla gene, with bla(TEM-1) being the most prevalent variant. ESBL-related genes are frequently detected in ST131 genomes. Four virulence operons related to iron uptake are differentially distributed among the five dominant STs. The putative IncF-type plasmid is often associated with genes related to AMR and iron uptake. Estimation of core and accessory genome similarity identifies 12 presumptive epidemiological linkages that span anywhere between 2-18 months. CONCLUSIONS: Multiple but genetically distinct E. coli lineages similarly cause BSI and shape AMR dissemination, emphasizing the opportunistic nature of E. coli in invasive infections.202540595425
5203120.9166Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. OBJECTIVES: The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS: Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS: WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION: The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin.202133516893
836130.9161Cross-Sectional Assessment on Carbapenem-Resistant Gram-Negative Bacteria Isolated from Patients in Moldova. Information on the molecular epidemiology and carbapenem resistance mechanisms in Gram-negative bacterial isolates in Moldova is scarce. To close this knowledge gap, carbapenem-resistant Gram-negative bacteria were collected over an 11-month period in a routine diagnostic laboratory in Moldova. Antimicrobial susceptibility was phenotypically and genotypically assessed. Phylogenetic relationships were investigated and multi-locus sequence types were provided. The assessment indicated several clusters of phylogenetically closely related carbapenem-resistant Klebsiella pneumoniae (sequence types ST101, ST395 and ST377), Acinetobacter baumannii (ST2, ST19 and ST78) and Pseudomonas aeruginosa (ST357 and ST654) isolates next to a number of less frequently observed species and sequence types. A phylogenetic relationship to characterized isolates from neighboring Ukraine could be confirmed. Identified carbapenemase genes comprised bla(OXA-23), bla(OXA-72) and bla(GES-11) in A. baumannii, bla(KPC-3), bla(NDM-1) and bla(OXA-48) in K. pneumoniae, as well as bla(VIM-2) in Pseudomonas aeruginosa. In conclusion, the assessment suggested the spread of carbapenem-resistant Gram-negative bacteria in Moldova which were partly pre-described from neighboring Ukraine, as well as likely spill-over events, facilitating the regional spread of carbapenem-resistant clones. Several isolates with very high genomic similarity further support the hypothesis of likely regional transmission events driven by several evolutionary successful clonal lineages.202540005787
849140.9161Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs.202539163245
1743150.9160International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.202032239649
2114160.9160Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended.202438742235
827170.9159Characterization of a ST137 multidrug-resistant Campylobacter jejuni strain with a tet(O)-positive genomic island from a bloodstream infection patient. Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, bla(OXA-61), tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria.202439208964
847180.9159Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.202033362261
5201190.9159Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.202032127921