# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5052 | 0 | 0.8544 | Modulation of Klebsiella pneumoniae Outer Membrane Vesicle Protein Cargo under Antibiotic Treatment. Klebsiella pneumoniae is a nosocomial pathogen and an important propagator of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Like other Gram-negative bacteria, they secrete outer membrane vesicles (OMVs) that distribute virulence and resistance factors. Here, we subjected a K. pneumoniae-XDR to subinhibitory concentrations of meropenem, amikacin, polymyxin B, and a combination of these agents to evaluate changes in the protein cargo of OMVs through liquid chromatography-tandem mass spectrometry (LC-MS/MS). Genome sequencing of the clinical isolate K. pneumoniae strain HCD1 (KpHCD1) revealed the presence of 41 resistance genes and 159 virulence factors. We identified 64 proteins in KpHCD1-OMVs modulated with different antibiotic treatments involved in processing genetic information, environmental information, cell envelope formation, energy metabolism, and drug resistance. The OMV proteome expression profile suggests that OMVs may be associated with pathogenicity, survival, stress response, and resistance dissemination. | 2023 | 37371610 |
| 812 | 1 | 0.8513 | Characterization of plQ5 plasmid originating fromKlebsiella pneumoniae. plQ5 plasmid consists of a group of genes specifying resistance to ampicillin, chloramphenicol, carbencillin, kanamycin and trimethoprim-sulphamethoxazole. It is isolated inKlebslella pneumoniae ZD532, is about 26.8 Kb and is freely transmissible to various bacterial species of Gram-negative bacteria. Physical characterization revealed that plQ5 plasmid has a single site forHindill,BamHI,EcoRI and two sites forBglII restriction enzyme. | 1990 | 24429982 |
| 2493 | 2 | 0.8509 | Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized. | 2025 | 40135944 |
| 8717 | 3 | 0.8498 | Protective Effect of Pediococcus pentosaceus Li05 on Constipation via TGR5/TPH1/5-HT Activation. Pediococcus pentosaceus Li05, a strain of lactic acid bacteria isolated from the faeces of healthy volunteers, exhibited potential protective effects against various diseases. This study performed third-generation sequencing and detailed characterisation of its genome. The Li05 chromosome harboured conserved genes associated with acid resistance (atp), bile salt resistance (bsh), oxidative stress resistance (hsl, dltA, and et al.), and adhesion (nrd, gap, and et al.), whereas the plasmid did not contain antibiotic resistance or virulence genes. Following intervention with Li05 in loperamide-induced constipated mice, constipation symptoms improved. Meanwhile, alterations in gut microbiota, increased BSH activity in faeces, and modifications to the faecal bile acid profile were observed. Additionally, expression levels of TGR5 and TPH1 in the colon of the mice increased, leading to elevated 5-HT levels. When the TGR5 gene was knocked out or the TPH1 inhibitor LX1606 was administered to suppress 5-HT synthesis in constipated mice, the beneficial effects of Li05 on gastrointestinal motility and mucus secretion were reversed. Culturing intestinal organoids demonstrated that increased bile acids such as DCA, Iso-LCA, and EALCA could enhance 5-HT levels through the TGR5/TPH1 axis. Therefore, we concluded that Li05 regulated bile acid metabolism, subsequently increasing 5-HT levels through the TGR5/TPH1 axis, thus alleviating constipation. | 2025 | 41159760 |
| 6007 | 4 | 0.8498 | Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 (o)C). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 μg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 μg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca(2+) and Mg(2+) concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B. | 2021 | 34332149 |
| 5 | 5 | 0.8481 | GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. RAR1, SGT1, and HSP90 are important components of effector-triggered immunity (ETI) in diverse plants, where RAR1 and SGT1 are thought to serve as HSP90 co-chaperones. We show that ETI in soybean requires RAR1 and SGT1 but not HSP90. Rsv1-mediated extreme resistance to Soybean mosaic virus (SMV) and Rpg-1b-mediated resistance to Pseudomonas syringae were compromised in plants silenced for GmRAR1 and GmSGT1-2 but not GmHSP90. This suggests that RAR1- or SGT1-dependant signaling is not always associated with a dependence on HSP90. Unlike in Arabidopsis, SGT1 in soybean also mediates ETI against the bacterial pathogen P. syringae. Similar to Arabidopsis, soybean RAR1 and SGT1 proteins interact with each other and two related HSP90 proteins. Plants silenced for GmHSP90 genes or GmRAR1 exhibited altered morphology, suggesting that these proteins also contribute to developmental processes. Silencing GmRAR1 and GmSGT1-2 impaired resistance to virulent bacteria and systemic acquired resistance (SAR) in soybean as well. Because the Arabidopsis rar1 mutant also showed a defect in SAR, we conclude that RAR1 and SGT1 serve as a point of convergence for basal resistance, ETI, and SAR. We demonstrate that, although soybean defense signaling pathways recruit structurally conserved components, they have distinct requirements for specific proteins. | 2009 | 19061405 |
| 823 | 6 | 0.8481 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 2494 | 7 | 0.8480 | Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Klebsiella pneumoniae is well-known opportunistic enterobacteria involved in complex clinical infections in humans and animals. The domestic animals might be a source of the multidrug-resistant virulent K. pneumoniae to humans. K. pneumoniae infections in domestic animals are considered as an emergent global concern. The horizontal gene transfer plays essential roles in bacterial genome evolution by spread of virulence and resistance determinants. However, the virulence genes can be transferred horizontally via K. pneumoniae-derived outer membrane vesicles (OMVs) remains to be unreported. In this study, we performed complete genome sequencing of two K. pneumoniae HvK2115 and CRK3022 with hypervirulent or carbapenem-resistant traits. OMVs from K. pneumoniae HvK2115 and CRK3022 were purified and observed. The carriage of virulence or resistance genes in K. pneumoniae OMVs was identified. The influence of OMVs on the horizontal transfer of virulence-related or drug-resistant plasmids among K. pneumoniae strains was evaluated thoroughly. The plasmid transfer to recipient bacteria through OMVs was identified by polymerase chain reaction, pulsed field gel electrophoresis and Southern blot. This study revealed that OMVs could mediate the intraspecific and interspecific horizontal transfer of the virulence plasmid phvK2115. OMVs could simultaneously transfer two resistance plasmids into K. pneumoniae and Escherichia coli recipient strains. OMVs-mediated horizontal transfer of virulence plasmid phvK2115 could significantly enhance the pathogenicity of human carbapenem-resistant K. pneumoniae CRK3022. The CRK3022 acquired the virulence plasmid phvK2115 could become a CR-hvKp strain. It was critically important that OMVs-mediated horizontal transfer of phvK2115 lead to the coexistence of virulence and carbapenem-resistance genes in K. pneumoniae, resulting in the emerging of carbapenem-resistant hypervirulent K. pneumoniae. | 2022 | 35679514 |
| 8829 | 8 | 0.8478 | VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Haemophilus parasuis, a member of the family Pasteurellaceae, is a common inhabitant of the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease. As other virulent Pasteurellaceae, H. parasuis can prevent phagocytosis, but the bacterial factors involved in this virulence mechanism are not known. In order to identify genes involved in phagocytosis resistance, we constructed a genomic library of the highly virulent reference strain Nagasaki and clones were selected by increased survival after incubation with porcine alveolar macrophages (PAM). Two clones containing two virulent-associated trimeric autotransporter (VtaA) genes, vtaA8 and vtaA9, respectively, were selected by this method. A reduction in the interaction of the two clones with the macrophages was detected by flow cytometry. Monoclonal antibodies were produced and used to demonstrate the presence of these proteins on the bacterial surface of the corresponding clone, and on the H. parasuis phagocytosis-resistant strain PC4-6P. The effect of VtaA8 and VtaA9 in the trafficking of the bacteria through the endocytic pathway was examined by fluorescence microscopy and a delay was detected in the localization of the vtaA8 and vtaA9 clones in acidic compartments. These results are compatible with a partial inhibition of the routing of the bacteria via the degradative phagosome. Finally, antibodies against a common epitope in VtaA8 and VtaA9 were opsonic and promoted phagocytosis of the phagocytosis-resistant strain PC4-6P by PAM. Taken together, these results indicate that VtaA8 and VtaA9 are surface proteins that play a role in phagocytosis resistance of H. parasuis. | 2012 | 22839779 |
| 2491 | 9 | 0.8472 | Baicalein Inhibits Plasmid-Mediated Horizontal Transmission of the blaKPC Multidrug Resistance Gene from Klebsiella pneumoniae to Escherichia coli. Carbapenem-resistant bacterial infections pose an urgent threat to public health worldwide. Horizontal transmission of the β-lacatamase Klebsiella pneumoniae carbapenemase (blaKPC) multidrug resistance gene is a major mechanism for global dissemination of carbapenem resistance. Here, we investigated the effects of baicalein, an active ingredient of a Chinese herbal medicine, on plasmid-mediated horizontal transmission of blaKPC from a meropenem-resistant K. pneumoniae strain (JZ2157) to a meropenem-sensitive Escherichia coli strain (E600). Baicalein showed no direct effects on the growth of JZ2157 or E600. Co-cultivation of JZ2157 and E600 caused the spread of meropenem resistance from JZ2157 to E600. Baicalein at 40 and 400 µg/mL significantly inhibited the spread of meropenem resistance. Co-cultivation also resulted in plasmid-mediated transmission of blaKPC from JZ2157 to E600, which was inhibited by baicalein. Therefore, baicalein may be used in clinical practice to prevent or contain outbreaks of carbapenem-resistant infections by inhibiting the horizontal transfer of resistance genes across bacteria species. | 2023 | 36543225 |
| 2456 | 10 | 0.8469 | MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Colistin is one of the last-resort therapeutic agents to combat multidrug-resistant Gram-negative bacteria (GNB) including Klebsiella pneumoniae. Although it happens rarely, resistance to colistin has been reported for several GNB. A total of 20 colistin resistant (col-R) and three colistin susceptible (col-S) clinical isolates of K. pneumoniae were studied to explore the underlying mechanisms of colistin resistance. The presence of plasmid encoded resistance genes, mcr-1, mcr-2, mcr-3, and mcr-4 genes were examined by PCR. The nucleotide sequences of pmrA, pmrB, phoP, phoQ, and mgrB genes were determined. To evaluate the association between colistin resistance and upregulation of pmrHFIJKLM and pmrCAB operons, transcriptional level of the pmrK and pmrC genes encoding for lipopolysaccharide target modifying enzymes was quantified by RT-qPCR analysis. None of the plasmid encoded resistance genes were detected in the studied isolates. Inactivation of MgrB due to nonsense mutations and insertion of IS elements was observed in 15 col-R isolates (75%). IS elements (IS5-like and IS1-like families) most commonly targeted the coding region and in one case the promoter region of the mgrB. Complementation with wild-type MgrB restored colistin susceptibility in isolates with altered mgrB. All col-R isolates lacked any genetic alterations in the pmrA, phoP, and phoQ genes and substitutions identified in the pmrB were not found to be involved in resistance conferring determined by complementation assay. Colistin resistance linked with upregulation of pmrHFIJKLM and pmrCAB operons with the pmrK and pmrC being overexpressed in 20 and 11 col-R isolates, respectively. Our results demonstrated that MgrB alterations are the major mechanisms contributing to colistin resistance in the tested K. pneumoniae isolates from Iran. | 2017 | 29326662 |
| 556 | 11 | 0.8467 | An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn(2+) /Cd(2+) -dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells. | 2017 | 28696001 |
| 1721 | 12 | 0.8466 | Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone. | 2022 | 35899054 |
| 522 | 13 | 0.8461 | Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination. | 2024 | 39382695 |
| 5176 | 14 | 0.8460 | Genetic Alternatives for Experimental Adaptation to Colistin in Three Pseudomonas aeruginosa Lineages. Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa ATCC-27833 reference strain (Pa_ATCC), an environmental P. aeruginosa isolate (Pa_Environment), and a clinical isolate with multiple drug resistance (Pa_MDR) were grown over an increasing 5-step colistin concentration gradient from 0 to 400 mg/L. Pa_Environment demonstrated the highest growth pace, achieving the 400 mg/L band in 15 days, whereas it took 37 and 60 days for Pa_MDR and Pa_ATCC, respectively. To identify the genome changes that occurred during adaptation to colistin, the isolates selected during the growth of the bacteria (n = 185) were subjected to whole genome sequencing. In total, 17 mutation variants in eight lipopolysaccharide-synthesis-associated genes were detected. phoQ and lpxL/PA0011 were affected in all three lineages, whereas changes in pmrB were found in Pa_Environment and Pa_MDR but not in Pa_ATCC. In addition, mutations were detected in 34 general metabolism genes, and each lineage developed mutations in a unique set of such genes. Thus, the three examined distinct P. aeruginosa strains demonstrated different capabilities and genetic pathways of colistin adaptation. | 2024 | 38786180 |
| 59 | 15 | 0.8458 | Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens. Characterizing the molecular mechanism involved in nonhost disease resistance is important to understand the adaptations of plant-pathogen interactions. In this study, virus-induced gene silencing (VIGS)-based forward genetics screen was utilized to identify genes involved in nonhost resistance in Nicotiana benthamiana. Genes encoding ribosomal proteins, RPL12 and RPL19, were identified in the screening. These genes when silenced in N. benthamiana caused a delay in nonhost bacteria induced hypersensitive response (HR) with concurrent increase in nonhost bacterial multiplication. Arabidopsis mutants of AtRPL12 and AtRPL19 also compromised nonhost resistance. The studies on NbRPL12 and NbRPL19 double silenced plants suggested that both RPL12 and RPL19 act in the same pathway to confer nonhost resistance. Our work suggests a role for RPL12 and RPL19 in nonhost disease resistance in N. benthamiana and Arabidopsis. In addition, we show that these genes also play a minor role in basal resistance against virulent pathogens. | 2015 | 26779226 |
| 631 | 16 | 0.8458 | Effects of Regulatory Network Organization and Environment on PmrD Connector Activity and Polymyxin Resistance in Klebsiella pneumoniae and Escherichia coli. Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a "connector" protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB-the most common cause of spontaneous polymyxin resistance in this bacterium-suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation. | 2021 | 33361295 |
| 222 | 17 | 0.8457 | Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence. | 2020 | 32250173 |
| 1718 | 18 | 0.8457 | Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. OBJECTIVES: Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pathogenic and capable of causing disease in a broader context. METHODS: Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and two separate animal models. RESULTS: Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were associated with increased virulence in animals. CONCLUSIONS: Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, highlighting the need to prevent disseminated spread. | 2024 | 39396555 |
| 6134 | 19 | 0.8457 | Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen. Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. | 2015 | 26358298 |