# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1346 | 0 | 0.9466 | High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health. | 2021 | 33294974 |
| 1253 | 1 | 0.9463 | Phenotypic and Genotypic Assessment of Antibiotic Resistance and Genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 Alleles of Helicobacter pylori Bacteria Isolated from Raw Meat. BACKGROUND: Foodstuffs with animal origins, particularly meat, are likely reservoirs of Helicobacter pylori. PURPOSE: An existing survey was accompanied to assess phenotypic and genotypic profiles of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles amongst the H. pylori bacteria recovered from raw meat. METHODS: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping. RESULTS: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori. Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%), trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori bacteria had at least resistance toward one antibiotic, even though incidence of resistance toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively. VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA (55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%), s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns. Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%, respectively. A total of 196 combined genotyping patterns were also perceived. CONCLUSION: The role of raw meat, particularly ovine meat, in transmission of virulent and resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence. CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys are compulsory to originate momentous relations between distribution of genotypes, antibiotic resistance, and antibiotic resistance genes. | 2020 | 32099418 |
| 1382 | 2 | 0.9460 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 5233 | 3 | 0.9459 | Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria. | 2021 | 34401102 |
| 828 | 4 | 0.9456 | Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns. | 2023 | 37623959 |
| 1227 | 5 | 0.9452 | Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance. | 1990 | 2282290 |
| 1222 | 6 | 0.9449 | Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide. | 2022 | 36406904 |
| 5245 | 7 | 0.9448 | Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. | 2021 | 33302298 |
| 5247 | 8 | 0.9447 | Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef. | 2018 | 30476443 |
| 2991 | 9 | 0.9445 | Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals. | 2023 | 37317052 |
| 1294 | 10 | 0.9445 | Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. OBJECTIVE: This study aimed to isolate and identify Escherichia coli from broiler samples from Sukabumi, Indonesia. Also, antibiogram studies of the isolated bacteria were carried out considering the detection of the antibiotic resistance genes. MATERIALS AND METHODS: Cloaca swabs (n = 45) were collected from broilers in Sukabumi, Indonesia. Isolation and identification of E. coli were carried out according to standard bacteriological techniques and biochemical tests, followed by confirmation of the polymerase chain reaction targeting the uspA gene. Antibiotic sensitivity test, using several antibiotics [tetracycline (TE), oxytetracycline (OT), ampicillin (AMP), gentamicin (CN), nalidixic acid (NA), ciprofloxacin (CIP), enrofloxacin (ENR), chloramphenicol, and erythromycin] was carried out following the Kirby-Bauer disk diffusion method. Detection of antibiotic resistance coding genes was carried out by PCR using specific oligonucleotide primers. Statistical analysis was carried out with one-way analysis of variance. RESULTS: The results showed that 55.6% (25/45) of the samples were associated with the presence of E. coli. Antibiotic sensitivity test showed that the E. coli isolates were resistant to TE (88%; 22/25), OT (88%; 22/25), AMP (100%; 25/25), CN (64%; 16/25), NA (100%; 22/25), CIP (88%; 22/25), ENR (72%; 18/25), chloramphenicol (0%; 0/25), and erythromycin (92%; 23/25). On the other hand, the antibiotic resistance coding genes were tetA (86.4%; 19/22), blaTEM (100%; 25/25), aac(3)-IV (0%; 0/16), gyrA (100%; 25/25), and ermB (13%; 3/23). It was found that chloramphenicol is markedly different from other antibiotic treatment groups. CONCLUSION: Escherichia coli was successfully isolated from cloacal swabs of broiler in Sukabumi, Indonesia. The bacteria were resistant to TE, OT, AMP, CN, NA, CIP, ENR, and erythromycin. Chloramphenicol was more sensitive and effective than other antibiotics in inhibiting the growth of E. coli. The antibiotic resistance genes detected were tetA, blaTEM, gyrA, and ermB. | 2021 | 33860017 |
| 1347 | 11 | 0.9444 | Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant(9) for aminoglycosides, mdtK, gyrA, gyrB, parC, parE for quinolones and cat1, cat4 for phenicols. Phylogenetic analysis based on accessory genes clustered S. Legon strains separately from the S. Muenster strains. These strains were from different markets suggesting local circulation of related strains. Our study justifies consumer resistance to consumption of unripened soft cheese without further lethal heat treatment, and provides evidence that supports the Ghana Health Service recommendation for use of 3rd generation cephalosporins for the treatment of MDR NTS infections. | 2018 | 29680695 |
| 5246 | 12 | 0.9444 | Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) Salmonella, 3GC(r) Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TET(r) Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops. | 2019 | 31532250 |
| 1345 | 13 | 0.9442 | Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BACKGROUND: Despite the importance of the B. cereus group as major foodborne pathogens that may cause diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of 174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA, hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells and antimicrobial susceptibility towards 11 antibiotics. RESULTS: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%), nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic, harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups. Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were 50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and 35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus strains depended on the food source of isolation. The presence of virulence factors is not always consistent with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin, chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin, kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin. CONCLUSION: Our results contribute data that are primary to facilitate risk assessments in order to prevent food poisoning due to B. cereus group. | 2019 | 31445510 |
| 1344 | 14 | 0.9441 | Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BACKGROUND: This study aimed to evaluate the safety of raw vegetable products present on the German market regarding toxin-producing Bacillus cereus sensu lato (s.l.) group bacteria. RESULTS: A total of 147 B. cereus s.l. group strains isolated from cucumbers, carrots, herbs, salad leaves and ready-to-eat mixed salad leaves were analyzed. Their toxinogenic potential was assessed by multiplex PCR targeting the hemolysin BL (hbl) component D (hblD), non-hemolytic enterotoxin (nhe) component A (nheA), cytotoxin K-2 (cytK-2) and the cereulide (ces) toxin genes. In addition, a serological test was used to detect Hbl and Nhe toxins. On the basis of PCR and serological results, none of the strains were positive for the cereulide protein/genes, while 91.2, 83.0 and 37.4% were positive for the Hbl, Nhe and CytK toxins or their genes, respectively. Numerous strains produced multiple toxins. Generally, strains showed resistance against the β-lactam antibiotics such as penicillin G and cefotaxim (100%), as well as amoxicillin/clavulanic acid combination and ampicillin (99.3%). Most strains were susceptible to ciprofloxacin (99.3%), chloramphenicol (98.6%), amikacin (98.0%), imipenem (93.9%), erythromycin (91.8%), gentamicin (88.4%), tetracycline (76.2%) and trimethoprim/sulfamethoxazole combination (52.4%). The genomes of eight selected strains were sequenced. The toxin gene profiles detected by PCR and serological test mostly agreed with those from whole-genome sequence data. CONCLUSIONS: Our study showed that B. cereus s.l. strains encoding toxin genes occur in products sold on the German market and that these may pose a health risk to the consumer if present at elevated levels. Furthermore, a small percentage of these strains harbor antibiotic resistance genes. The presence of these bacteria in fresh produce should, therefore, be monitored to guarantee their safety. | 2019 | 31706266 |
| 1364 | 15 | 0.9440 | Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria. | 2007 | 17536933 |
| 2413 | 16 | 0.9439 | Antibiotic resistance of Gallibacterium anatis biovar haemolytica isolates from chickens. INTRODUCTION: Gallibacterium anatis is an opportunistic bacteria inducing a range of clinical signs in poultry. Gallibacterium anatis strains show multidrug resistance to antibacterial substances. The purpose of this study was to examine the susceptibility of G. anatis biovar haemolytica isolates collected from the respiratory, reproduction and gastrointestinal tracts of chickens to different antibiotics from various classes. MATERIAL AND METHODS: Gallibacterium anatis biovar haemolytica was identified in tracheal swab and gastrointestinal and reproductive tract tissue samples from Polish layer and broiler chicken flocks. Twenty six isolates with β-haemolysis capability, each from a different flock, obtained from the respiratory (n = 8), reproductive (n = 10) and gastrointestinal (n = 8) tracts were selected and identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry after culturing. A PCR method targeting the 16S genes was used for verification of isolates. The isolates' susceptibility to 20 antimicrobials was evaluated using the disc diffusion method for 8 drugs and the dilution method for the other 12. In addition, they were tested for the presence of the GtxA, gyrB and flfA virulence genes and blaROB, aphA, tetB and tetH antibiotic resistance genes by PCR. RESULTS: The most prevalent antibiotic resistance was to tilmicosin, tylosin and quinupristin/dalfopristin (all 100%), erythromycin (96.2%), tetracycline (96.2%), linezolid (92.3%) and teicoplanin (92.3%). Universal susceptibility was to only one antibiotic, chloramphenicol. Statistically significant differences were found between the resistance of gastrointestinal tract strains and that of strains from other tracts to daptomycin, gentamicin, ciprofloxacin and colistin. The GtxA and gyrB genes were detected in 100% of isolates and flfA in 19.2%. The isolates most frequently contained tetB and less frequently tetH and aphA, and did not contain blaROB. CONCLUSION: Most G. anatis biovar haemolytica isolates were resistant to many classes of antibiotics. Therefore, it is necessary and important to be vigilant for the occurrence of these bacteria and thorough in their diagnosis. | 2024 | 38525234 |
| 1237 | 17 | 0.9439 | Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems. | 2018 | 30477153 |
| 1268 | 18 | 0.9439 | Prevalence of multiple antibiotic-resistant Gram-negative bacteria on bagged, ready-to-eat baby spinach. In this study, multiple antibiotic-resistant (MAR) Gram-negative bacteria (GNB) were isolated from triple-washed, bagged, ready-to-eat (RTE) baby spinach. Biochemical identification of randomly selected bacterial colonies showed the predominance of cytochrome oxidase-positive Pseudomonas species. Among the GNB, a higher prevalence of resistance was observed against cefoxitin (93.1%) followed by ampicillin (79.4%), chloramphenicol (72.6%), ceftizoxime (65.7%), aztreonam (64.9%), cefotaxime (53.6%), imipenem (38.3%), ceftazidime (33.5%), gentamicin (32.6%), tetracycline (22.2%), and ciprofloxacin (19.8%). Multiple antibiotic resistance (MAR) linked to two or more antibiotics was found in 95.3% of isolates, and resistance was transferable in the strains tested. These findings confirm the presence of MAR bacteria on RTE baby spinach and suggest that human consumption of this produce would amplify the MAR gene pool via conjugal transfer of MAR genes to commensal gut microflora and bacterial pathogens. | 2013 | 22838727 |
| 1226 | 19 | 0.9439 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |