KINDERGARTENS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
537000.8814Airborne antibiotic resistance genes in Hong Kong kindergartens. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) have become a critical global public health issue in this century. There is increasing evidence for the presence and transmission of ARGs by air transmission. In this research, ARGs and ARB in air conditioner filter dust (AC dust) and urine samples from 55 kindergarten children in 17 kindergartens and nearby 10 soil samples in Hong Kong were analyzed. The results showed the presence of 16 ARG subtypes and the mobile genetic element (MGE) intI1 in AC dust, and 12 ARG subtypes in the soil samples. ARGs presenting resistance to sulfonamide (6.9 × 10(-3)-0.17) (expressed as relative abundance of the 16 S rRNA genes) were most abundant followed by macrolides (1.8 × 10(-3)-3.3 × 10(-2)), sul1, sul2 (sulfonamide), ermF (macrolides) and intI1 genes in AC dust in 17 kindergartens. For soil samples, 12 ARG subtypes and the intI1 were detected, and the genes providing resistance to sulfonamide (1.6 × 10(-3)-2.7 × 10(-1)) were the most abundant ARGs in the 10 soil samples, followed by tetracycline (ND-1.4 × 10(-2)). Multi-resistant bacteria with sul1, sul2, intI1, or tetQ were detected in all AC dust samples and some urine samples. Based on bacterial genera and ARG co-occurrence network analysis and Hong Kong's special geographical location and cultural environment, there might be two origins for the ARGs detected in the kindergartens: β-lactam/macrolide ARGs mainly derived from human medicine use and tetracycline/sulfonamide ARGs mainly from other areas, as well as IntI1 may play a role in the spread of ARGs in Hong Kong. The widely detection of ARGs in AC dust in kindergartens in Hong Kong highlights the need for the improvement of management measures.202032041021
348410.8812Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.201930952342
260220.8778Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health.202540610649
260330.8775Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine.202032034890
528140.8774Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the bla(TEM) gene, whereas 58.3% of isolates in meltwater possessed bla(TEM) and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and bla(TEM) (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes.202438262510
786950.8774Nano-CeO(2) activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO(2) (nCeO(2)) application. Specifically, root exposure to nCeO(2) (1, 2.5, 5, 10 mg L(-1), 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO(2) exposure at 10 mg L(-1). Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L(-1) nCeO(2), thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO(2) upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO(2) contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.202438570269
348260.8773Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.201829751438
348370.8772Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 10(6) ± 1.6 × 10(6) copies/mL in the western Pacific Ocean, with the highest value (7.8 × 10(6) copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.202235085628
348180.8770Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.201627418176
716090.8769High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
7162100.8765Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization.201829860105
1190110.8765Co-occurrence of mcr-1, mcr-3, mcr-7 and clinically relevant antimicrobial resistance genes in environmental and fecal samples. Multidrug-resistant bacteria harboring different antimicrobial resistance genes (ARGs) have been detected worldwide. The association of plasmid-mediated colistin resistance genes (mcr-like) and other ARGs in bacteria isolated from animals is a huge concern worldwide. Therefore, this study aimed to investigate the presence of mcr-like genes and clinically relevant ARGs as well as plasmids in samples from a zoo. Fecal and environmental (soil and water) samples were collected from a zoo and the DNA of cultivable aerobic bacteria was extracted. ARGs were screened by PCR and the plasmids were detected using the PCR-based replicon typing method. A total of 74 amplicons from 27 ARGs [mcr-1, mcr-3, mcr-7.1, bla(CTX-M-Gp1), bla(CTX-M-Gp2), bla(CTX-M-Gp9), bla(VEB), bla(PER), bla(CMY), tetA, tetB, tetC, aadA, aac(6')-Ib, aph(3')-Ia, ant(2'')-Ia, qnrA, qnrB, qnrS, oqxA, oqxB, sul1, sul2, sul3, cmlA, mefAE, ermB] and 21 amplicons from eight plasmid families (IncY, ColE-like, IncF(repB), IncFIA, IncFIB, IncHI1, IncFIC, IncP) were detected. These findings reinforce that the zoo acts as a reservoir of clinically relevant ARGs, including mcr-like, and call attention to the monitoring studies in the zoo. Therefore, to the best of our knowledge, this is the first report of the world of mcr-1, mcr-3 and mcr-7.1 in environmental samples from the zoo.202032382766
6381120.8763Occurrence and distribution of antibiotic resistance genes in Elymus nutans silage from different altitudes on the Qinghai-Tibetan Plateau. INTRODUCTION: Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) have attracted more attentions in fermented feed recently. However, little information is available on the occurrence and distribution of ARGs in ensiled forages in the alpine region of the Qinghai-Tibetan plateau (QTP) with an extremely harsh environment. METHODS: The study investigated the distribution and spread mechanism of ARB and ARGs in Elymus nutans silage along 2600 m (low), 3600 m (medium) and 4600 m (high) altitude in the QTP. RESULTS: The major ARG types in Elymus nutans silage were multidrug, aminoglycoside, bacitracin, beta-lactam and polymyxin, while tnpA and IS91 were the dominant mobile genetic elements (MGEs) subtypes in the Elymus nutans silage. The dominant ARGs were mainly carried by Pantoea, Enterobacter, Serratia, and Lelliottia. Although altitudinal gradient had no influence on the diversity or abundance of other ARGs and MGEs in the Elymus nutans silage (p > 0.05), the network co-occurrence patterns among ARGs, MGEs, and bacteria in high-altitude silage were more complex than that in low- and medium-altitude silages. The dominant clinical ARGs in the alpine silage were bacA and acrF, and the abundance of clinical ARGs decreased with prolonged fermentation time. DISCUSSION: This study provides important data on the status of ARGs in ensiled forage from the alpine region of the QTP.202540458713
5261130.8762Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
7755140.8762Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river.201931726563
3486150.8762Insights into antibiotic and heavy metal resistance interactions in Escherichia coli isolated from livestock manure and fertilized soil. Heavy metal and antibiotic-resistant bacteria from livestock feces are ecological and public health problems. However, the distribution and relationships of antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs), and virulence factors (VFs) and their transmission mechanisms remain unclear. Therefore, we investigated the resistance of Escherichia coli, the prevalence of its ARGs, HMRGs, and VFs, and their transmission mechanisms in livestock fresh feces (FF), composted feces (CF), and fertilized soil (FS). In total, 99.54% (n = 221) and 91.44% (n = 203) of E. coli were resistant to at least one antibiotic and one heavy metal, respectively. Additionally, 72.52% (n = 161) were multi-drug resistant (MDR), of which Cu-resistant E. coli accounted for 72.67% (117/161). More than 99.34% (88/89) of E. coli carried multidrug ARGs, VFs, and the Cu resistance genes cueO and cusABCRFS. The Cu resistance genes cueO and cusABCRFS were mainly located on chromosomes, and cueO and cusF were positively associated with HMRGs, ARGs, and VFs. The Cu resistance genes pcoABCDRS were located on the plasmid pLKYL-P02 flanked by ARGs in PF18C from FF group and on chromosomes flanked by HMRGs in SAXZ1-1 from FS group. These results improved our understanding of bacterial multidrug and heavy metal resistance in the environment.202438154221
1214160.8762Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.201222731858
1811170.8762Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.202539945541
5280180.8761High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes bla(CTX-M) (21.1-71.1%), bla(ACC) (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of bla(ACC,)bla(CTX-M,)bla(SHV,)bla(ampC,)qnrA, sulI, tetA and bla(TEM) revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs.202337858689
3071190.8761Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera.202337835689