# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2105 | 0 | 0.9900 | Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. BACKGROUND: Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. OBJECTIVES: We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. METHODS: We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. RESULTS: Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. CONCLUSION: These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa. | 2017 | 29164118 |
| 2523 | 1 | 0.9893 | Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6. | 2025 | 41088443 |
| 2258 | 2 | 0.9892 | Antimicrobial-Resistant Bacteria in Infected Wounds, Ghana, 2014(1). Wound infections are an emerging medical problem worldwide, frequently neglected in under-resourced countries. Bacterial culture and antimicrobial drug resistance testing of infected wounds in patients in a rural hospital in Ghana identified no methicillin-resistant Staphylococcus aureus or carbapenem-resistant Enterobacteriaceae but identified high combined resistance of Enterobacteriaceae against third-generation cephalosporins and fluoroquinolones. | 2018 | 29664368 |
| 2108 | 3 | 0.9892 | Prevalence and Molecular Characterization of Carbapenemase-Producing Multidrug-Resistant Bacteria in Diabetic Foot Ulcer Infections. Background: Diabetic foot ulcers (DFUs) represent severe complications in diabetic patients, often leading to chronic infections and potentially resulting in nontraumatic lower-limb amputations. The increasing incidence of multidrug-resistant (MDR) bacteria in DFUs complicates treatment strategies and worsens patient prognosis. Among these pathogens, carbapenemase-producing pathogens have emerged as particularly concerning owing to their resistance to β-lactam antibiotics, including carbapenems. Methods: This study evaluated the prevalence of MDR bacteria, specifically carbapenemase-producing pathogens, in DFU infections. A total of 200 clinical isolates from DFU patients were analyzed via phenotypic assays, including the modified Hodge test (MHT) and the Carba NP test, alongside molecular techniques to detect carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48). Results: Among the isolates, 51.7% were confirmed to be carbapenemase producers. The key identified pathogens included Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The most commonly detected carbapenemase genes were blaKPC (27.6%) and blaNDM (24.1%). Carbapenemase-producing isolates presented high resistance to β-lactam antibiotics, whereas non-carbapenemase-producing isolates presented resistance through mechanisms such as porin loss and efflux pumps. Conclusions: The findings of this study highlight the significant burden of MDR infections, particularly carbapenemase-producing organisms, in DFUs. MDR infections were strongly associated with critical clinical parameters, including pyrexia (p = 0.017), recent antibiotic use (p = 0.003), and the severity of infections. Notably, the need for minor amputations was much higher in MDR cases (p < 0.001), as was the need for major amputations (p < 0.001). MDR infections were also strongly associated with polymicrobial infections (p < 0.001). Furthermore, Wagner ulcer grade ≥II was more common in MDR cases (p = 0.002). These results emphasize the urgent need for enhanced microbiological surveillance and the development of tailored antimicrobial strategies to combat MDR pathogens effectively. Given the high prevalence of carbapenem resistance, there is an immediate need to explore novel therapeutic options to improve clinical outcomes for diabetic patients with DFUs. | 2025 | 39857026 |
| 2267 | 4 | 0.9892 | MOLECULAR CHARACTERIZATION AND DETECTION OF MULTIDRUGRESISTANT GENE IN BACTERIAL ISOLATES CAUSING LOWER RESPIRATORY TRACT INFECTIONS (LRTI) AMONG HIV/AIDS PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) IN UYO, SOUTH-SOUTH NIGERIA. BACKGROUND: Antibiotic-resistant genes (ARGs) pose a significant challenge in modern medicine, rendering infections increasingly difficult to treat as bacteria acquire mechanisms to resist antibiotics. Addressing ARGs necessitates a multifaceted approach, encompassing surveillance efforts to monitor their presence and the development of strategies aimed at managing and curbing the spread of antibiotic resistance. Hence, this study characterized the genetic determinants of antibiotic resistance among isolates responsible for Lower Respiratory Tract Infections (LRTIs) in People Living with HIV/AIDS (PLWHA) in Uyo. METHODS: Sputum samples were collected from 61 LRTI suspects, with bacterial isolates identified using VITEK-2 technology. Polymerase chain reaction assays were employed to detect resistance genes within the isolates. RESULTS: Results revealed a bacterial etiology in 39.3% of the samples, with a majority (79.2%) originating from St. Luke Hospital, Anua (SLHA), and the remainder (20.8%) from the University of Uyo Teaching Hospital (UUTH). Staphylococcus aureus emerged as the predominant isolate (46.6%), while resistance was notably high against Gentamicin and Sulphamethazole/Trimethoprim. Conversely, Azithromycin, imipenem, clindamycin, erythromycin, and ceftriaxone displayed relatively lower resistance levels across all isolates. Notably, four resistance genes CTX-M, Aac, KPC, and MecA were identified, with CTX-M detected in all multidrug-resistant isolates. This underscores the predominantly community-acquired nature of resistance as conferred by CTX-M. CONCLUSION: In conclusion, this study underscores the critical importance of continued vigilance and proactive measures in combating antibiotic resistance, particularly within vulnerable populations such as PLWHA. By elucidating the genetic mechanisms underlying antibiotic resistance, informed targeted interventions can be mitigated to curb threats posed by multidrug-resistant bacteria in clinical settings. | 2024 | 40385712 |
| 2170 | 5 | 0.9891 | Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia. | 2015 | 28883936 |
| 2256 | 6 | 0.9889 | Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. PURPOSE: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs. | 2023 | 37384803 |
| 2100 | 7 | 0.9889 | Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon. | 2021 | 34790487 |
| 2270 | 8 | 0.9889 | Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential. | 2019 | 30905579 |
| 2196 | 9 | 0.9889 | Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens. | 2025 | 40585877 |
| 1875 | 10 | 0.9889 | Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs. | 2023 | 37508213 |
| 2259 | 11 | 0.9889 | Gram-Negative Bacteria Harboring Multiple Carbapenemase Genes, United States, 2012-2019. Reports of organisms harboring multiple carbapenemase genes have increased since 2010. During October 2012-April 2019, the Centers for Disease Control and Prevention documented 151 of these isolates from 100 patients in the United States. Possible risk factors included recent history of international travel, international inpatient healthcare, and solid organ or bone marrow transplantation. | 2021 | 34424168 |
| 2133 | 12 | 0.9889 | Multi-drug resistant bacteria isolates from lymphatic filariasis patients in the Ahanta West District, Ghana. BACKGROUND: Antimicrobial resistance is associated with increased morbidity in secondary infections and is a global threat owning to the ubiquitous nature of resistance genes in the environment. Recent estimate put the deaths associated with bacterial antimicrobial resistance in 2019 at 4.95 million worldwide. Lymphatic filariasis (LF), a Neglected Tropical Disease (NTD), is associated with the poor living in the tropical regions of the world. LF patients are prone to developing acute dermatolymphangioadenitis (ADLA), a condition that puts them at risk of developing secondary bacterial infections due to skin peeling. ADLA particularly worsens the prognosis of patients leading to usage of antibiotics as a therapeutic intervention. This may result in inappropriate usage of antibiotics due to self-medication and non-compliance; exacerbating antimicrobial resistance in LF patients. In this perspective, we assessed the possibilities of antimicrobial resistance in LF patients. We focused on antibiotic usage, antibiotic resistance in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolates and looked at genes (mecA and Extended-spectrum beta-lactamase [blaCTX-M, blaSHV and blaTEM]) coding for resistance in multi-drug resistant (MDR) bacterial isolates. RESULTS: Of the sixty (60) participants, fifty-four (n = 54, 90%) were within 31-60 years of age, twenty (n = 20, 33.33%) were unemployed and thirty-eight (n = 38, 50.67%) had wounds aged (in months) seven (7) months and above. Amoxicillin (54%) and chloramphenicol (22%) were the most frequently used antibiotics for self-medication. Staphylococcus aureus isolates (n = 26) were mostly resistant to penicillin (n = 23, 88.46%) and least resistant to erythromycin (n = 2, 7.69%). Escherichia coli isolates (n = 5) were resistant to tetracycline (n = 5, 100%) and ampicillin (n = 5, 100%) but were sensitive to meropenem (n = 5, 100%). Pseudomonas aeruginosa isolates (n = 8) were most resistant to meropenem (n = 3, 37.50%) and to a lesser ciprofloxacin (n = 2, 25%), gentamicin (n = 2, 25%) and ceftazidime (n = 2, 25%). Multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA), cephalosporin resistant Escherichia coli. and carbapenem resistant Pseudomonas aeruginosa were four (n = 4, 15.38%), two (n = 2, 40%) and two (n = 2, 25%) respectively. ESBL (blaCTX-M) and mecA genes were implicated in the resistance mechanism of Escherichia coli and MRSA, respectively. CONCLUSION: The findings show presence of MDR isolates from LF patients presenting with chronic wounds; thus, the need to prioritize resistance of MDR bacteria into treatment strategies optimizing morbidity management protocols. This could guide antibiotic selection for treating LF patients presenting with ADLA. | 2022 | 36221074 |
| 1458 | 13 | 0.9888 | Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers. | 2018 | 30069306 |
| 2496 | 14 | 0.9888 | Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii. | 2020 | 32971809 |
| 2585 | 15 | 0.9888 | A scoping review of the prevalence of antimicrobial-resistant pathogens and signatures in ready-to-eat street foods in Africa: implications for public health. BACKGROUND AND OBJECTIVE: Despite its critical role in individual and societal health, food hygiene remains underexplored. Antibiotic-resistant pathogenic bacteria in ready-to-eat (RTE) food threaten public health. This scoping review collected data on the epidemiological prevalence of RTE food-contaminated pathogens resistant to antimicrobial drugs and resistance genes in Africa. METHOD: Using electronic databases, such as PubMed, Scopus, and Web of Science (WoS), handpicked from references, pre-reviewed published articles were retrieved and analyzed according to the PRISMA-ScR guidelines. RESULTS: The findings indicate 40 previewed published articles qualified for meta-synthesis in the scoping review with a population/case ratio of 11,653/5,338 (45.80%). The most frequently reported RTE foods were meat or beef/beef-soup, chicken or poultry products, salads, vegetable salads, and sandwiches, which harboured pathogens such as E. coli, Salmonella, and Staphylococcus. Antibiotic susceptibility tests revealed the use of 48 antibiotics to manage infections, following CLSI (Clinical and Laboratory Standards Institute) protocols. Moreover, 10 authors reported 54 resistance genes associated with pathogenic resistant bacteria. In addition, only 15 studies received funding or financial support. CONCLUSION: These findings from several researchers indicate that RTE street foods in African and resource-limited nations harbour enteric pathogens and are a significant concern to the public health system and reservoir of the spread of antibiotic resistance. This underscores the necessity of implementing effective control strategies to address challenges and limit the spread of resistant bacteria in RTE foods. The antimicrobial resistance surveillance system in the region is a significant concern. Notably, Africa needs to strengthen the national and international regulatory bodies and a health surveillance system on antimicrobial resistance, particularly among developing nations. | 2025 | 40270817 |
| 1738 | 16 | 0.9888 | Role of Institut Hospitalo-Universitaire Méditerranée Infection in the surveillance of resistance to antibiotics and training of students in the Mediterranean basin and in African countries. Surveillance of antibiotic resistance has become a public global concern after the rapid worldwide dissemination of several antibiotic resistance genes. Here we report the role of the Institut Hospitalo-Universitaire Méditerranée Infection created in 2011 in the identification and description of multidrug-resistant bacteria thanks to collaborations and training of students from the Mediterranean basin and from African countries. Since the creation of the institute, 95 students and researchers have come from 19 different countries from these areas to characterize 6359 bacterial isolates from 7280 samples from humans (64%), animals (28%) and the environment (8%). Most bacterial isolates studied were Gram-negative bacteria (n = 5588; 87.9%), mostly from Algeria (n = 4190), Lebanon (n = 946), Greece (n = 610), Saudi Arabia (n = 299) and Senegal (n = 278). Antibiotic resistance was diversified with the detection and characterization of extended-spectrum β-lactamases, carbapenemases and resistance to colistin, vancomycin and methicillin. All those studies led to 97 indexed international scientific papers. Over the last 6 years, our institute has created a huge network of collaborations by training students that plays a major role in the surveillance of resistance to antibiotics in these countries. | 2018 | 30402244 |
| 2269 | 17 | 0.9888 | Genomic detection of Panton-Valentine Leucocidins encoding genes, virulence factors and distribution of antiseptic resistance determinants among Methicillin-resistant S. aureus isolates from patients attending regional referral hospitals in Tanzania. BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a formidable public scourge causing worldwide mild to severe life-threatening infections. The ability of this strain to swiftly spread, evolve, and acquire resistance genes and virulence factors such as pvl genes has further rendered this strain difficult to treat. Of concern, is a recently recognized ability to resist antiseptic/disinfectant agents used as an essential part of treatment and infection control practices. This study aimed at detecting the presence of pvl genes and determining the distribution of antiseptic resistance genes in Methicillin-resistant Staphylococcus aureus isolates through whole genome sequencing technology. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted across six regional referral hospitals-Dodoma, Songea, Kitete-Kigoma, Morogoro, and Tabora on the mainland, and Mnazi Mmoja from Zanzibar islands counterparts using the archived isolates of Staphylococcus aureus bacteria. The isolates were collected from Inpatients and Outpatients who attended these hospitals from January 2020 to Dec 2021. Bacterial analysis was carried out using classical microbiological techniques and whole genome sequencing (WGS) using the Illumina Nextseq 550 sequencer platform. Several bioinformatic tools were used, KmerFinder 3.2 was used for species identification, MLST 2.0 tool was used for Multilocus Sequence Typing and SCCmecFinder 1.2 was used for SCCmec typing. Virulence genes were detected using virulenceFinder 2.0, while resistance genes were detected by ResFinder 4.1, and phylogenetic relatedness was determined by CSI Phylogeny 1.4 tools. RESULTS: Out of the 80 MRSA isolates analyzed, 11 (14%) were found to harbor LukS-PV and LukF-PV, pvl-encoding genes in their genome; therefore pvl-positive MRSA. The majority (82%) of the MRSA isolates bearing pvl genes were also found to exhibit the antiseptic/disinfectant genes in their genome. Moreover, all (80) sequenced MRSA isolates were found to harbor SCCmec type IV subtype 2B&5. The isolates exhibited 4 different sequence types, ST8, ST88, ST789 and ST121. Notably, the predominant sequence type among the isolates was ST8 72 (90%). CONCLUSION: The notably high rate of antiseptic resistance particularly in the Methicillin-resistant S. aureus strains poses a significant challenge to infection control measures. The fact that some of these virulent strains harbor the LukS-PV and LukF-PV, the pvl encoding genes, highlight the importance of developing effective interventions to combat the spreading of these pathogenic bacterial strains. Certainly, strengthening antimicrobial resistance surveillance and stewardship will ultimately reduce the selection pressure, improve the patient's treatment outcome and public health in Tanzania. | 2025 | 39833938 |
| 5587 | 18 | 0.9887 | Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya. There is increasing proof of bacterial resistance to antibiotics all over the world, and this puts the effectiveness of antimicrobials that have been essential in decreasing disease mortality and morbidity at stake. The WHO has labeled some classes of antimicrobials as vitally important to human health. Bacteria from animals are thought to be reservoirs of resistance genes that can be transferred to humans through the food chain. This study aimed to identify the resistance patterns of bacteria from pork and poultry meat samples purchased from leading retail outlets in Kenya. Of the 393 samples collected, 98.4% of pork and 96.6% of poultry were contaminated with high levels of bacteria. Among the 611 bacterial isolates recovered, 38.5% were multi-drug resistant. This resistance was noted for critically essential antimicrobials (according to the WHO) such as rifampicin (96%), ampicillin (35%), cefotaxime (9%), cefepime (6%), and ciprofloxacin (6%). Moreover, there was high resistance to key antimicrobials for veterinary medicine such as tetracycline (39%), sulfamethoxazole (33%), and trimethoprim (30%). It is essential to spread awareness about the judicious use of antibiotics and take preventive measures to reduce disease burden. | 2023 | 36978480 |
| 2265 | 19 | 0.9887 | Genotypic Patterns of Multidrug-Resistant Acinetobacter baumannii: A Systematic Review. Acinetobacter baumannii (A. baumannii) is one of the most common bacteria in nosocomial infections. Inappropriate usage of antibiotics has led to expanding emergence resistance to A. baumannii as a multidrug-resistant (MDR) strain. Empirical antibiotic therapy is necessary to evaluate the resistant gene pattern of MDR A. baumannii. For this purpose, the present study evaluated the resistance genes pattern of MDR A. baumannii collected from hospitalized patients using a genotypic diagnostic technique. To find evidence related to the study objectives, databases were searched such as Google Scholar, Web of Science, Science Direct, PubMed, and Scopus from 2000 to 2022, with specified keywords in the title and text of the articles. Articles were included based on inclusion and exclusion criteria. The mentioned database displayed 284 articles. After screening, 65 eligible articles were included. The results showed that various b-lactamases genes, aminoglycoside-modifying enzymes (AMEs) genes, and pump-expressing genes are resistance gene patterns in MDR A. baumannii isolates. MDR A. baumannii has significantly become resistant to b-lactams, carbapenems, and aminoglycosides. | 2023 | 37200758 |