# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9383 | 0 | 0.9997 | The cost of antibiotic resistance--from the perspective of a bacterium. The possession of an antibiotic resistance gene clearly benefits a bacterium when the corresponding antibiotic is present. But does the resistant bacterium suffer a cost of resistance (i.e. a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put antibiotic resistance genes into naïve bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments have shown that the cost of antibiotic resistance may be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics. | 1997 | 9189639 |
| 9384 | 1 | 0.9997 | Bacterial evolution and the cost of antibiotic resistance. Bacteria clearly benefit from the possession of an antibiotic resistance gene when the corresponding antibiotic is present. But do resistant bacteria suffer a cost of resistance (i.e., a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put resistance genes into naive bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments (in vitro and in vivo) show that the cost of antibiotic resistance can be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics. | 1998 | 10943373 |
| 9282 | 2 | 0.9997 | Could DNA uptake be a side effect of bacterial adhesion and twitching motility? DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila. | 2013 | 23381940 |
| 9492 | 3 | 0.9997 | The Search for 'Evolution-Proof' Antibiotics. The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves. | 2018 | 29191398 |
| 9476 | 4 | 0.9997 | Phage design and directed evolution to evolve phage for therapy. Phage therapy or Phage treatment is the use of bacteriolysing phage in treating bacterial infections by using the viruses that infects and kills bacteria. This technique has been studied and practiced very long ago, but with the advent of antibiotics, it has been neglected. This foregone technique is now witnessing a revival due to development of bacterial resistance. Nowadays, with the awareness of genetic sequence of organisms, it is required that informed choices of phages have to be made for the most efficacious results. Furthermore, phages with the evolving genes are taken into consideration for the subsequent improvement in treating the patients for bacterial diseases. In addition, direct evolution methods are increasingly developing, since these are capable of creating new biological molecules having changed or unique activities, such as, improved target specificity, evolution of novel proteins with new catalytic properties or creation of nucleic acids that are capable of recognizing required pathogenic bacteria. This system is incorporates continuous evolution such as protein or genes are put under continuous evolution by providing continuous mutagenesis with least human intervention. Although, this system providing continuous directed evolution is very effective, it imposes some challenges due to requirement of heavy investment of time and resources. This chapter focuses on development of phage as a therapeutic agent against various bacteria causing diseases and it improvement using direct evolution of proteins and nucleic acids such that they target specific organisms. | 2023 | 37739551 |
| 9131 | 5 | 0.9997 | How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Acquired antibiotic resistance among dangerous bacterial pathogens is an increasing medical problem. While in Mycobacterium tuberculosis this occurs by mutation in the genes encoding the targets for antibiotic action, other pathogens have generally gained their resistance genes by horizontal gene transfer from non-pathogenic bacteria. The ultimate source of many of these genes is almost certainly the actinomycetes that make the antibiotics and therefore need self-protective mechanisms to avoid suicide. How do they ensure that they are resistant at the time when intracellular antibiotic concentrations reach potentially lethal levels? In this issue of Molecular Microbiology, Tahlan et al. describe a solution to this problem in which an antibiotically inactive precursor of a Streptomyces coelicolor antibiotic induces resistance -- in this example by means of a trans-membrane export pump -- so that the organism is already primed for resistance at the time when it is needed. The authors generalize their interpretation to other cases where antibiotic resistance depends on export, but it will be interesting to find out whether it could in fact apply more widely, to include the other major mechanisms of resistance: target modification and the synthesis of antibiotics via a series of chemically modified intermediates, with removal of the protective group at the time of secretion into the outside medium. | 2007 | 17238916 |
| 9530 | 6 | 0.9997 | The role of biofilms in otolaryngologic infections. PURPOSE OF REVIEW: Bacterial biofilms have recently been shown to be important in diseases of the head and neck. Because the concept of biofilms is novel to most practitioners, it is important to gain a basic understanding of biofilms and to recognize that strategies developed to treat planktonic bacteria are ineffective against bacteria in a biofilm. RECENT FINDINGS: Bacteria preferentially exist in complex, surface-attached organizations known as biofilms. Bacteria in biofilms express a different set of genes than their planktonic counterparts and have markedly different phenotypes. Biofilm bacteria communicate with each other, and have mechanisms to diffuse nutrients and dispose of waste. Biofilms provide bacteria with distinct advantages, including antimicrobial resistance and protection from host defenses. Thus, bacteria exist in a far more complex fashion than previously thought and can best be thought of as "self-assembling multicellular communities." Although a focus on the planktonic form of bacteria has been useful in understanding acute infections, chronic infections are much better understood as biofilm illnesses. Biofilms have been shown to be involved in chronic otitis media, chronic tonsillitis, cholesteatoma, and device-associated infections. SUMMARY: Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the biofilm concept of disease is beginning to spread throughout the clinical world. Understanding that many of the infections that affect structures of the head and neck are actually biofilm related is fundamental to developing rational strategies for treatment and prevention. | 2004 | 15167027 |
| 9541 | 7 | 0.9997 | The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged. | 2025 | 40005731 |
| 9597 | 8 | 0.9997 | Role of xenobiotic transporters in bacterial drug resistance and virulence. Since the discovery of antibiotic therapeutics, the battles between humans and infectious diseases have never been stopped. Humans always face the appearance of a new bacterial drug-resistant strain followed by new antibiotic development. However, as the genome sequences of infectious bacteria have been gradually determined, a completely new approach has opened. This approach can analyze the entire gene resources of bacterial drug resistance. Through analysis, it may be possible to discover the underlying mechanism of drug resistance that will appear in the future. In this review article, we will first introduce the method to analyze all the xenobiotic transporter genes by using the genomic information. Next, we will discuss the regulation of xenobiotic transporter gene expression through the two-component signal transduction system, the principal environmental sensing and response system in bacteria. Furthermore, we will also introduce the virulence roles of xenobiotic transporters, which is an ongoing research area. | 2008 | 18481812 |
| 9471 | 9 | 0.9997 | Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. The application of bacteriophages as antibacterial agents has many benefits in the "post-antibiotic age". To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce here a new method, which considers the host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target bacteria while minimizing the number of phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails and phage-bacteria networks are compared as the understanding of the complex interactions amongst bacteriophages could be critical in the development of realistic phage therapy models in the future. | 2022 | 35165352 |
| 9377 | 10 | 0.9997 | Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation. Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections. | 2023 | 37191555 |
| 9598 | 11 | 0.9997 | Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs. | 2013 | 24427156 |
| 9152 | 12 | 0.9997 | Pseudomonas aeruginosa biofilm sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. The biofilm mode of bacterial growth may be the preferred form of existence in nature. Because of the global impact of problematic biofilms, study of the mechanisms affording resistance to various biocides is of dire importance. Furthermore, understanding the physiological differences between biofilm and planktonic organisms ranks particularly high on the list of important and necessary research. Such contributions will only serve to broaden our knowledge base, especially regarding the development of better antimicrobials while also fine-tuning the use of current highly effective antimicrobials. Using H2O2 as a model oxidizing biocide, we demonstrate the marked resistance of biofilm bacteria relative to planktonic cells. Because many biocides are good oxidizing agents (e.g., H2O2, HOCl), understanding the mechanisms by which genes involved in combating oxidative stress are activated is important in determining the overall efficacy of such biocides. Future studies will focus on determining mechanisms of oxidative stress gene regulation in bacterial biofilms. | 1999 | 10547822 |
| 9534 | 13 | 0.9997 | Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. Antibiotic resistance is a major medical and public health challenge, characterized by global increases in the prevalence of resistant strains. The conventional view is that all antibiotic resistance is problematic, even when not in pathogens. Resistance in commensal bacteria poses risks, as resistant organisms can provide a reservoir of resistance genes that can be horizontally transferred to pathogens or may themselves cause opportunistic infections in the future. While these risks are real, we propose that commensal resistance can also generate benefits during antibiotic treatment of human infection, by promoting continued ecological suppression of pathogens. To define and illustrate this alternative conceptual perspective, we use a two-species mathematical model to identify the necessary and sufficient ecological conditions for beneficial resistance. We show that the benefits are limited to species (or strain) interactions where commensals suppress pathogen growth and are maximized when commensals compete with, rather than prey on or otherwise exploit pathogens. By identifying benefits of commensal resistance, we propose that rather than strictly minimizing all resistance, resistance management may be better viewed as an optimization problem. We discuss implications in two applied contexts: bystander (nontarget) selection within commensal microbiomes and pathogen treatment given polymicrobial infections. IMPORTANCE Antibiotic resistance is commonly viewed as universally costly, regardless of which bacterial cells express resistance. Here, we derive an opposing logic, where resistance in commensal bacteria can lead to reductions in pathogen density and improved outcomes on both the patient and public health scales. We use a mathematical model of commensal-pathogen interactions to define the necessary and sufficient conditions for beneficial resistance, highlighting the importance of reciprocal ecological inhibition to maximize the benefits of resistance. More broadly, we argue that determining the benefits as well as the costs of resistances in human microbiomes can transform resistance management from a minimization to an optimization problem. We discuss applied contexts and close with a review of key resistance optimization dimensions, including the magnitude, spectrum, and mechanism of resistance. | 2023 | 36475750 |
| 9472 | 14 | 0.9997 | Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness. | 2022 | 35890320 |
| 9428 | 15 | 0.9997 | Biofilms and their properties. Bacteria within the oral cavity live primarily as complex, polymicrobial biofilms. Dental biofilms are necessary etiological factors for dental caries and periodontal diseases but have also been implicated in diseases outside the oral cavity. Biofilm is the preferred lifestyle for bacteria, and biofilms are found on almost any surface in nature. Bacteria growing within a biofilm exhibit an altered phenotype. Substantial changes in gene expression occur when bacteria are in close proximity or physical contact with one another or with the host. This may facilitate nutritional co-operation, cell-cell signaling, and gene transfer, including transfer of antibiotic-resistance genes, thus rendering biofilm bacteria with properties other than those found in free-floating, planktonic bacteria. We will discuss biofilm properties and possible consequences for future prophylaxis. | 2018 | 30178559 |
| 9130 | 16 | 0.9997 | Glycopeptide antibiotic resistance. Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance. | 2002 | 11807177 |
| 9525 | 17 | 0.9997 | Is there a serious risk of resistance development to azoles among fungi due to the widespread use and long-term application of azole antifungals in medicine? It is well known that development of antibiotic resistance in bacteria is not a matter of if but of when. Recently, azoles have been recommended for long-term prophylaxis of invasive fungal infections; hence, it could be argued that fungi also will become resistant to these agents. However, fungi are different from bacteria in several critical points. Bacteria display several resistance mechanisms: alteration of the target, limited access to the target and modification/inactivation of the antibacterial compound. In fungi some mechanisms of resistance to azoles are also known; with azoles for example, alterations of the 14alpha-demethylase target, as well as efflux pumps. It has been observed that these phenotypes develop in yeast populations either due to mutations or to selection processes. However, enzymes which destroy azoles are not found. Furthermore, a horizontal transfer of genes coding resistance traits does not occur in fungi, which means that an explosive expansion of resistances is unlikely to occur, especially in moulds. Indeed, in epidemiologic studies on human and environmental isolates there is convincing evidence that azole resistance is quite uncommon. | 2008 | 18325827 |
| 9393 | 18 | 0.9997 | Self-limiting paratransgenesis. Presently, the principal tools to combat malaria are restricted to killing the parasite in infected people and killing the mosquito vector to thwart transmission. While successful, these approaches are losing effectiveness in view of parasite resistance to drugs and mosquito resistance to insecticides. Clearly, new approaches to fight this deadly disease need to be developed. Recently, one such approach-engineering mosquito resident bacteria to secrete anti-parasite compounds-has proven in the laboratory to be highly effective. However, implementation of this strategy requires approval from regulators as it involves introduction of recombinant bacteria into the field. A frequent argument by regulators is that if something unexpectedly goes wrong after release, there must be a recall mechanism. This report addresses this concern. Previously we have shown that a Serratia bacterium isolated from a mosquito ovary is able to spread through mosquito populations and is amenable to be engineered to secrete anti-plasmodial compounds. We have introduced a plasmid into this bacterium that carries a fluorescent protein gene and show that when cultured in the laboratory, the plasmid is completely lost in about 130 bacterial generations. Importantly, when these bacteria were introduced into mosquitoes, the bacteria were transmitted from one generation to the next, but the plasmid was lost after three mosquito generations, rendering the bacteria non-recombinant (wild type). Furthermore, no evidence was obtained for horizontal transfer of the plasmid to other bacteria either in culture or in the mosquito. Prior to release, it is imperative to demonstrate that the genes that thwart parasite development in the mosquito are safe to the environment. This report describes a methodology to safely achieve this goal, utilizing transient expression from a plasmid that is gradually lost, returning the bacterium to wild type status. | 2020 | 32810151 |
| 9537 | 19 | 0.9997 | Antimicrobial Resistance and Inorganic Nanoparticles. Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them. | 2021 | 34884695 |