# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3021 | 0 | 0.9792 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 3008 | 1 | 0.9775 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 1535 | 2 | 0.9773 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 3020 | 3 | 0.9762 | Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance. | 2019 | 31381486 |
| 3019 | 4 | 0.9758 | Identification and Characterization of New Resistance-Conferring SGI1s (Salmonella Genomic Island 1) in Proteus mirabilis. Salmonella genomic island 1 (SGI1) is a resistance-conferring chromosomal genomic island that contains an antibiotic resistance gene cluster. The international spread of SGI1-containing strains drew attention to the role of genomic islands in the dissemination of antibiotic resistance genes in Salmonella and other Gram-negative bacteria. In this study, five SGI1 variants conferring multidrug and heavy metal resistance were identified and characterized in Proteus mirabilis strains: SGI1-PmCAU, SGI1-PmABB, SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48. The genetic structures of SGI1-PmCAU and SGI1-PmABB were identical to previously reported SGI1s, while structural analysis showed that SGI1-PmJN16, SGI1-PmJN40, and SGI1-PmJN48 are new SGI1 variants. SGI1-PmJN16 is derived from SGI1-Z with the MDR region containing a new gene cassette array dfrA12-orfF-aadA2-qacEΔ1-sul1-chrA-orf1. SGI1-PmJN40 has an unprecedented structure that contains two right direct repeat sequences separated by a transcriptional regulator-rich DNA fragment, and is predicted to form two different extrachromosomal mobilizable DNA circles for dissemination. SGI1-PmJN48 lacks a common ORF S044, and its right junction region exhibits a unique genetic organization due to the reverse integration of a P. mirabilis chromosomal gene cluster and the insertion of part of a P. mirabilis plasmid, making it the largest known SGI1 to date (189.1 kb). Further mobility functional analysis suggested that these SGIs can be excised from the chromosome for transfer between bacteria, which promotes the horizontal transfer of antibiotic and heavy metal resistance genes. The identification and characterization of the new SGI1 variants in this work suggested the diversity of SGI1 structures and their significant roles in the evolution of bacteria. | 2018 | 30619228 |
| 1763 | 5 | 0.9757 | Multidrug Resistance Genes Carried by a Novel Transposon Tn7376 and a Genomic Island Named MMGI-4 in a Pathogenic Morganella morganii Isolate. Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes. | 2022 | 35510850 |
| 1388 | 6 | 0.9754 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 3029 | 7 | 0.9754 | Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP-binding-cassette (ABC)-type ATPase and permease, and an efflux membrane fusion protein (MFP) of the RND-family is encoded between the replication/partition and the mobilization module. Homologues of the macrolide resistance genes mph(A), mrx and mphR(A) were detected on eight other erythromycin resistance-plasmids isolated from activated sludge bacteria. Plasmid pRSB101-like repA amplicons were also obtained from plasmid-DNA preparations of the final effluents of the wastewater treatment plant indicating that pRSB101-like plasmids are released with the final effluents into the environment. | 2004 | 15528650 |
| 3028 | 8 | 0.9752 | Novel macrolide resistance module carried by the IncP-1beta resistance plasmid pRSB111, isolated from a wastewater treatment plant. The macrolide resistance plasmid pRSB111 was isolated from bacteria residing in the final effluents of a wastewater treatment plant. The 47-kb plasmid confers resistance to azithromycin, clarithromycin, erythromycin, roxithromycin, and tylosin when it is carried by Pseudomonas sp. strain B13 and is very similar to prototype IncP-1beta plasmid pB3, which was previously isolated from an activated-sludge bacterial community of a wastewater treatment plant. The two plasmids differ in their accessory regions, located downstream of the conjugative transfer module gene traC. Nucleotide sequence analysis of the pRSB111 accessory region revealed that it contains a new macrolide resistance module composed of the genes mphR(E), mph(E), and mrx(E), which putatively encode a transcriptional regulator, a macrolide phosphotransferase, and a transmembrane transport protein, respectively. Analysis of the contributions of the individual genes of the macrolide resistance module revealed that mph(E) and mrx(E) are required for high-level macrolide resistance. The resistance genes are flanked by two insertion sequences, namely, ISPa15 and ISRSB111. Two truncated transposable elements, IS6100 and remnants of a Tn3-like transposon, were identified in the vicinity of ISRSB111. The accessory element of pRSB111 apparently replaced the Tn402-like element present on the sister plasmid, pB3, as suggested by the conservation of Tn402-specific terminal inverted repeats on pRSB111. | 2007 | 17101677 |
| 2085 | 9 | 0.9752 | Quinolone Resistance Genes qnr, aac(6')-Ib-cr, oqxAB, and qepA in Environmental Escherichia coli: Insights into Their Genetic Contexts from Comparative Genomics. Previous studies have reported the occurrence of transferable quinolone resistance determinants in environmental Escherichia coli. However, little is known about their vectors and genetic contexts. To gain insights into these genetic characteristics, we analyzed the complete genomes of 53 environmental E. coli isolates containing one or more transferable quinolone resistance determinants, including 20 sequenced in this study and 33 sourced from RefSeq. The studied genomes carried the following transferable quinolone resistance determinants alone or in combination: aac(6')-Ib-cr, oqxAB, qepA1, qnrA1, qnrB4, qnrB7, qnrB19, qnrD1, qnrS1, and qnrS2, with qnrS1 being predominant. These resistance genes were detected on plasmids of diverse replicon types; however, aac(6')-Ib-cr, qnrS1, and qnrS2 were also detected on the chromosome. The genetic contexts surrounding these genes included not only those found in clinical isolates but also novel contexts, such as qnrD1 embedded within a composite transposon-like structure bounded by Tn3-derived inverted-repeat miniature elements (TIMEs). This study provides deep insights into mobile genetic elements associated with transferable quinolone resistance determinants, highlighting the importance of genomic surveillance of antimicrobial-resistant bacteria in the environment. | 2025 | 39960660 |
| 830 | 10 | 0.9751 | Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003-2015. 16S rRNA methyltransferase (16S RMTase) genes confer high-level aminoglycoside resistance, reducing treatment options for multidrug-resistant Gram-negative bacteria. Pseudomonas aeruginosa isolates (n = 221) exhibiting high-level pan-aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs ≥64, ≥32 and ≥32 mg/L, respectively) were screened for 16S RMTase genes to determine their occurrence among isolates submitted to a national reference laboratory from December 2003 to December 2015. 16S RMTase genes were identified using two multiplex PCRs, and whole-genome sequencing (WGS) was used to identify other antibiotic resistance genes, sequence types (STs) and the genetic environment of 16S RMTase genes. 16S RMTase genes were found in 8.6% (19/221) of isolates, with rmtB4 (47.4%; 9/19) being most common, followed by rmtD3 (21.1%; 4/19), rmtF2 (15.8%; 3/19) and single isolates harbouring rmtB1, rmtC and rmtD1. Carbapenemase genes were found in 89.5% (17/19) of 16S RMTase-positive isolates, with bla(VIM) (52.9%; 9/17) being most common. 16S RMTase genes were found in 'high-risk' clones known to harbour carbapenemase genes (ST233, ST277, ST357, ST654 and ST773). Analysis of the genetic environment of 16S RMTase genes identified that IS6100 was genetically linked to rmtB1; IS91 to rmtB4, rmtC or rmtD3; ISCR14 to rmtD1; and rmtF2 was linked to Tn3, IS91 or Tn1721. Although 16S RMTase genes explained only 8.6% of pan-aminoglycoside resistance in the P. aeruginosa isolates studied, the association of 16S RMTase genes with carbapenemase-producers and 'high-risk' clones highlights that continued surveillance is required to monitor spread as well as the importance of suppressing the emergence of dually-resistant clones in hospital settings. | 2022 | 35176475 |
| 3023 | 11 | 0.9751 | ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. SXT/R391 integrative conjugative elements (ICEs) are capable of self-transfer by conjugation and highly prevalent in various aquatic bacteria and Proteus species. In the present study, a novel SXT/R391 ICE, named ICEAplChn1, was identified in the multidrug resistant (MDR) Actinobacillus pleuropneumoniae strain app6. ICEAplChn1 was composed of the typical SXT/R391 backbone and insertion DNA at eight hotspots, including HS1, HS2, HS3, HS4, HS5, VRII, VRIII and a new variation region VRVI. Many of the insertion contents were not present in other reported SXT/R391 family members, including ICEApl2, a recently identified SXT/R391 ICE from a clinical isolate of A. pleuropneumoniae. Remarkably, the VRIII region had accumulated seven resistance genes tet(A), erm(42), floR, aphA6, strB (two copies), strA and sul2. Of them, erm(42) and aphA6 emerged for the first time not only in the SXT/R391 elements but also in A. pleuropneumoniae. Phylogenetic analysis showed considerable variation of the backbone sequence of ICEAplChn1, as compared to those of other SXT/R391 ICEs. A circular intermediate form of ICEAplChn1 was detected by nested PCR. However, the conjugation experiments using different bacteria as recipients failed. These findings demonstrated that SXT/R391 ICEs are able to adapt to a broader range of host bacterial species. The presence of the MDR gene cluster in ICEAplChn1 underlines that SXT/R391 ICE could serve as an important vector for the accumulation of antibiotic resistance genes. | 2018 | 29885796 |
| 5209 | 12 | 0.9750 | Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. | 2016 | 26941718 |
| 1798 | 13 | 0.9750 | Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria. | 2023 | 36988354 |
| 2088 | 14 | 0.9748 | Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables. The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, bla GES-11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG-10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and bla GES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2 (*), IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain. | 2016 | 27679611 |
| 833 | 15 | 0.9748 | Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. BACKGROUND: In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS: Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS: Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. | 2013 | 23951238 |
| 1996 | 16 | 0.9748 | Conjugation of plasmid harboring bla (NDM-1) in a clinical Providencia rettgeri strain through the formation of a fusion plasmid. Providencia rettgeri has recently gained increased importance owing to the New Delhi metallo-β-lactamase (NDM) and other β-lactamases produced by its clinical isolates. These enzymes reduce the efficiency of antimicrobial therapy. Herein, we reported the findings of whole-genome sequence analysis and a comprehensive pan-genome analysis performed on a multidrug-resistant P. rettgeri 18004577 clinical strain recovered from the urine of a hospitalized patient in Shandong, China, in 2018. Providencia rettgeri 18004577 was found to have a genome assembly size of 4.6 Mb with a G + C content of 41%; a circular plasmid p18004577_NDM of 273.3 Kb, harboring an accessory multidrug-resistant region; and a circular, stable IncT plasmid p18004577_Rts of 146.2 Kb. Additionally, various resistance genes were identified in its genome, including bla (NDM-1), bla (OXA-10), bla (PER-4), aph(3')-VI, ant(2'')-Ia, ant(3')-Ia, sul1, catB8, catA1, mph(E), and tet. Conjugation experiments and whole-genome sequencing revealed that the bla (NDM-1) gene could be transferred to the transconjugant via the formation of pJ18004577_NDM, a novel hybrid plasmid. Based on the genetic comparison, the main possible formation process for pJ18004577_NDM was the insertion of the [ΔISKox2-IS26-ΔISKox2]-aph(3')-VI-bla (NDM-1) translocatable unit module from p18004577_NDM into plasmid p18004577_Rts in the Russian doll insertion structure (ΔISKox2-IS26-ΔISKox2), which played a role similar to that of IS26 using the "copy-in" route in the mobilization of [aph(3')-VI]-bla (NDM-1). The array, multiplicity, and diversity of the resistance and virulence genes in this strain necessitate stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of the resistance genes. Roary analysis based on 30 P. rettgeri strains pan genome identified 415 core, 756 soft core, 5,744 shell, and 12,967 cloud genes, highlighting the "close" nature of P. rettgeri pan-genome. After a comprehensive pan-genome analysis, representative biological information was revealed that included phylogenetic distances, presence or absence of genes across the P. rettgeri bacteria clade, and functional distribution of proteins. Moreover, pan-genome analysis has been shown to be an effective approach to better understand P. rettgeri bacteria because it helps develop various tailored therapeutic strategies based on their biological similarities and differences. | 2022 | 36687647 |
| 3022 | 17 | 0.9748 | Sequencing and characterization of pBM400 from Bacillus megaterium QM B1551. Bacillus megaterium QM B1551 plasmid pBM400, one of seven indigenous plasmids, has been labeled with a selectable marker, isolated, completely sequenced, and partially characterized. A sequence of 53,903 bp was generated, revealing a total of 50 predicted open reading frames (ORFs); 33 were carried on one strand and 17 were carried on the other. These ORFs comprised 57% of the pBM400 sequence. Besides the replicon region and a complete rRNA operon that have previously been described, several interesting genes were found, including genes for predicted proteins for cell division (FtsZ and FtsK), DNA-RNA interaction (FtsK, Int/Rec, and reverse transcriptase), germination (CwlJ), styrene degradation (StyA), and heavy metal resistance (Cu-Cd export and ATPase). Three of the ORF products had high similarities to proteins from the Bacillus anthracis virulence plasmid pXO1. An insertion element with similarity to the IS256 family and several hypothetical proteins similar to those from the chromosomes of other Bacillus and Lactococcus species were present. This study provides a basis for isolation and sequencing of other high-molecular-weight plasmids from QM B1551 and for understanding the role of megaplasmids in gram-positive bacteria. The genes carried by pBM400 suggest a possible role of this plasmid in the survival of B. megaterium in hostile environments with heavy metals or styrene and also suggest that there has been an exchange of genes within the gram-positive bacteria, including pathogens. | 2003 | 14602653 |
| 1998 | 18 | 0.9747 | Characterization of a blaNDM‑1‑harboring plasmid from a Salmonella enterica clinical isolate in China. The plasmid-mediated transmission of antibiotic resistance genes has been reported to be involved in the development of antibiotic resistance in bacteria, and poses a serious threat for the success of bacterial infection treatment and human health worldwide. The present study used a 454 GS‑FLX pyrosequencing system to determine the ~140 kb nucleotide sequence of plasmid pHS36‑NDM, which was identified in a Salmonella Stanley isolate from the stool sample of an 11‑month‑old girl at Lishui Central Hospital, China, and which contains a New Delhi metallo‑β‑lactamase‑1 (NDM‑1) carbapenem resistance gene (blaNDM‑1). The 181 open reading frames encode proteins with functions including replication, stable inheritance, antibiotic resistance and mobile genetic elements. Both horizontal transfer and passage stability‑related genes were identified in pHS36‑NDM, including a conserved type 4 secretion system and stbA (stable plasmid inheritance protein A). Two multidrug resistance gene islands were identified: The ISEcp1‑blaCMY transposition unit which contains a CMY‑6 β‑lactamase gene (blaCMY‑6) and a quaternary ammonium compound resistance gene (sugE); and the intI1‑ISCR27 accessory region, which contained a trimethoprim resistance gene (dfrA12), two aminoglycoside resistance genes (aadA2 and rmtC), a truncated quaternary ammonium compound resistance gene (qacE∆1), a sulfonamide resistance gene (sul1), the blaNDM‑1 carbapenemase and a bleomycin resistance gene (bleMBL). pHS36‑NDM shared high homology with other blaNDM‑1‑containing plasmids reported in Sweden, Italy and Japan. However, no previous international travel history was documented for the patient and her family, even to neighboring cities. Furthermore, pHS36‑NDM is of a different incompatibility group to other published blaNDM‑1‑carrying plasmids reported in China, with low homology in the surrounding structure of blaNDM‑1. The present study will facilitate the understanding of the underlying resistance and dispersal mechanism of pHS36‑NDM, and will deepen our recognition of the ongoing spread of the blaNDM‑1‑containing plasmids. | 2017 | 28627648 |
| 3060 | 19 | 0.9747 | Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene. | 2009 | 19332679 |