# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1535 | 0 | 0.9858 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 1492 | 1 | 0.9851 | Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens. | 2025 | 40639501 |
| 1505 | 2 | 0.9849 | New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations. | 2024 | 38408071 |
| 1528 | 3 | 0.9845 | First Report of Coexistence of bla (SFO-1) and bla (NDM-1) β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (bla (SFO-1), bla (NDM-1), and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the bla (SFO-1), bla (NDM-1), and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes. | 2021 | 34220761 |
| 1390 | 4 | 0.9841 | Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19. | 2024 | 39320334 |
| 1536 | 5 | 0.9841 | Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens. | 2021 | 34468190 |
| 1388 | 6 | 0.9841 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1511 | 7 | 0.9840 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 3008 | 8 | 0.9840 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 5209 | 9 | 0.9835 | Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. | 2016 | 26941718 |
| 1529 | 10 | 0.9834 | Emergence and Characterization of a Novel IncP-6 Plasmid Harboring bla (KPC-2) and qnrS2 Genes in Aeromonas taiwanensis Isolates. The dissemination of Klebsiella pneumoniae carbapenemases (KPCs) among Gram-negative bacteria is an important threat to global health. However, KPC-producing bacteria from environmental samples are rarely reported. This study aimed to elucidate the underlying resistance mechanisms of three carbapenem-resistant Aeromonas taiwanensis isolates recovered from river sediment samples. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) analysis indicated a close evolutionary relationship among A. taiwanensis isolates. S1-PFGE, Southern blot and conjugation assays confirmed the presence of bla (KPC-) (2) and qnrS2 genes on a non-conjugative plasmid in these isolates. Plasmid analysis further showed that pKPC-1713 is an IncP-6 plasmid with a length of 53,205 bp, which can be transformed into DH5α strain and mediated carbapenems and quinolones resistance. The plasmid backbone of p1713-KPC demonstrated 99% sequence identity to that of IncP-6-type plasmid pKPC-cd17 from Aeromonas spp. and IncP-6-type plasmid: 1 from Citrobacter freundii at 74% coverage. A 14,808 bp insertion sequence was observed between merT gene and hypothetical protein in p1713-KPC, which include the quinolone resistance qnrS2 gene. Emergence of plasmid-borned bla (KPC) and qnrS2 genes from A. taiwanensis isolates highlights their possible dissemination into the environment. Therefore, potential detection of such plasmids from clinical isolates should be closely monitored. | 2019 | 31572337 |
| 2002 | 11 | 0.9834 | IncHI1 plasmids mediated the tet(X4) gene spread in Enterobacteriaceae in porcine. The tigecycline resistance gene tet(X4) was widespread in various bacteria. However, limited information about the plasmid harboring the tet(X4) gene spread among the different species is available. Here, we investigated the transmission mechanisms of the tet(X4) gene spread among bacteria in a pig farm. The tet(X4) positive Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Enterobacter hormaeche were identified in the same farm. The whole genome sequencing (WGS) analysis showed that the K. pneumoniae belonged to ST727 (n = 11) and ST3830 (n = 1), E. cloacae and E. hormaeche belonged to ST524 (n = 1) and ST1862 (n = 1). All tet(X4) genes were located on the IncHI1 plasmids that could be conjugatively transferred into the recipient E. coli C600 at 30°C. Moreover, a fusion plasmid was identified that the IncHI1 plasmid recombined with the IncN plasmid mediated by ISCR2 during the conjugation from strains B12L to C600 (pB12L-EC-1). The fusion plasmid also has been discovered in a K. pneumoniae (K1L) that could provide more opportunities to spread antimicrobial resistance genes. The tet(X4) plasmids in these bacteria are derived from the same plasmid with a similar structure. Moreover, all the IncHI1 plasmids harboring the tet(X4) gene in GenBank belonged to the pST17, the newly defined pMLST. The antimicrobial susceptibility testing was performed by broth microdilution method showing the transconjugants acquired the most antimicrobial resistance from the donor strains. Taken together, this report provides evidence that IncHI1/pST17 is an important carrier for the tet(X4) spread in Enterobacteriaceae species, and these transmission mechanisms may perform in the environment. | 2023 | 37065147 |
| 1507 | 12 | 0.9834 | Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China. Present study characterized five Escherichia coli co-expressing ESBL and MCR-1 recovered from food, food-producing animals, and companion animals in China. Antimicrobial susceptibility tests, conjugation experiments, and plasmid typing were performed. Whole genome sequencing (WGS) was undertaken for all five isolates using either PacBio RS II or Illumina HiSeq 2500 platforms. The cefotaxime and colistin resistance encoded by bla (CTX-M) and mcr-1 genes, respectively, was transferable by conjugation either together or separately for all five strains. Interestingly, the ESBL and mcr-1 genes could be co-selected by cefotaxime, while the colistin only selected the mcr-1-carrying plasmids during the conjugation experiments. Five E. coli sequence types (ST88, ST93, ST602, ST162, and ST457) were detected. Although diverse plasmid profiles were identified, IncI2, IncFIB, and IncFII plasmid types were predominant. These five clonally unrelated isolates harbored the mcr-1 gene located on similar plasmid backbones, which showed high nucleotide similarity to plasmid pHNSHP45. The mcr-1 gene can be co-transmitted with bla (CTX-M) genes through IncI2 plasmids with or without ISApl1 in our study. Characterization of these co-existence ESBL and mcr-1 isolates extends our understanding on the dissemination of these resistance markers among bacteria of diverse origins. | 2019 | 31555232 |
| 1517 | 13 | 0.9834 | Co-occurrence of blaNDM-1, rmtC, and mcr-9 in multidrug-resistant Enterobacter kobei strain isolated from an infant with urinary tract infection. OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health. | 2023 | 37062506 |
| 1515 | 14 | 0.9833 | A novel transposon Tn7540 carrying bla(NDM-9) and fosA3 in chromosome of a pathogenic multidrug-resistant Salmonella enterica serovar Indiana isolated from human faeces. OBJECTIVES: Emergence of multidrug-resistant (MDR) Salmonella enterica serovar Indiana has raised global concern. Mobile genetic elements (MGEs) play vital roles in accelerating the dissemination of resistance genes in bacteria communities. The study aims to improve our understanding of the underlying resistance mechanisms and characterize the MGEs in a MDR S. Indiana isolate. METHODS: Here, we report the characteristics of a MDR pathogenic S. Indiana isolate. The antimicrobial susceptibility pattern of S. Indiana QT6365 was determined. The genomic structure of the chromosome and the plasmid, serotype, and multi-locus sequence type were analysed by whole genome sequencing. The circular form derived from IS26-flanked transposon was confirmed by reverse polymerase chain reaction and sequencing. RESULTS: S. Indiana QT6365 exhibited resistance to all tested antimicrobials except for aztreonam, amikacin, polymyxin, and tigecycline, was defined as MDR, and belonged to ST17. S. Indiana QT6365 was closely related with food resource S. Indiana C629 with similar resistance gene profiles. Multiple resistance genes are mainly carried by a novel transposon Tn7540 located on the chromosome and an IncHI2/HI2A/N plasmid. Sequence analysis and the formed circular intermediate suggested Tn7540 might be generated through homologous recombination by IS26-bounded translocatable units (IS26-fosA-IS26-intI1-dfrA12-aadA2-sul1-ISCR1-bla(NDM-9)-IS26). CONCLUSIONS: To the best of our knowledge, this is the first report of the novel chromosomal transposon possessing bla(NDM-9) and fosA3 in S. Indiana isolated from human specimen, which might facilitate the dissemination of resistance genes and should arouse serious awareness. | 2023 | 36854357 |
| 1506 | 15 | 0.9832 | Detection of Five mcr-9-Carrying Enterobacterales Isolates in Four Czech Hospitals. The aim of this study was to report the characterization of the first mcr-positive Enterobacterales isolated from Czech hospitals. In 2019, one Citrobacter freundii and four Enterobacter isolates were recovered from Czech hospitals. The production of carbapenemases was examined by a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) imipenem hydrolysis assay. Additionally, bacteria were screened for the presence of carbapenemase-encoding genes and plasmid-mediated colistin resistance genes by PCR. To define the genetic units carrying mcr genes, the genomic DNAs of mcr-carrying clinical isolates were sequenced on the PacBio Sequel I platform. Results showed that all isolates carried bla(VIM)- and mcr-like genes. Analysis of whole-genome sequencing (WGS) data revealed that all isolates carried mcr-9-like alleles. Furthermore, the three sequence type 106 (ST106) Enterobacter hormaechei isolates harbored the bla(VIM-1) gene, while the ST764 E. hormaechei and ST95 C. freundii included bla(VIM-4) Analysis of plasmid sequences showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. Additionally, at least one multidrug resistance (MDR) region was identified in each mcr-9-carrying IncHI2 plasmid. The bla(VIM-4) gene was found in the MDR regions of p48880_MCR_VIM and p51929_MCR_VIM. In the three remaining isolates, bla(VIM-1) was localized on plasmids (∼55 kb) exhibiting repA-like sequences 99% identical to the respective gene of pKPC-CAV1193. In conclusion, to the best of our knowledge, these 5 isolates were the first mcr-9-positive bacteria of clinical origin identified in the Czech Republic. Additionally, the carriage of the bla(VIM-1) on pKPC-CAV1193-like plasmids is described for the first time. Thus, our findings underline the ongoing evolution of mobile elements implicated in the dissemination of clinically important resistance determinants.IMPORTANCE Infections caused by carbapenemase-producing bacteria have led to the revival of polymyxins as the "last-resort" antibiotic. Since 2016, several reports describing the presence of plasmid-mediated colistin resistance genes, mcr, in different host species and geographic areas were published. Here, we report the first detection of Enterobacterales carrying mcr-9-like alleles isolated from Czech hospitals in 2019. Furthermore, the three ST106 Enterobacter hormaechei isolates harbored bla(VIM-1), while the ST764 E. hormaechei and ST95 Citrobacter freundii isolates included bla(VIM-4) Analysis of WGS data showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. bla(VIM-4) was found in the MDR regions of IncHI2 plasmids, while bla(VIM-1) was localized on pKPC-CAV1193-like plasmids, described here for the first time. These findings underline the ongoing evolution of mobile elements implicated in dissemination of clinically important resistance determinants. Thus, WGS characterization of MDR bacteria is crucial to unravel the mechanisms involved in dissemination of resistance mechanisms. | 2020 | 33298573 |
| 1389 | 16 | 0.9831 | Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required. | 2021 | 34956131 |
| 1087 | 17 | 0.9831 | Characterization and Comparative Genomics Analysis of lncFII Multi-Resistance Plasmids Carrying bla (CTX) (-) (M) and Type1 Integrons From Escherichia coli. This research aimed to investigate the presence and transferability of the extended-spectrum β-lactamase resistance genes to identify the genetic context of multi-drug resistant (MDR) loci in two Escherichia coli plasmids from livestock and poultry breeding environment. MICs were determined by broth microdilution. A total of 137 E. coli resistant to extended-spectrum β-lactam antibiotics were screened for the presence of the ESBL genes by PCR. Only two E. coli out of 206 strains produced carbapenemases, including strain 11011 that produced enzyme A, and strain 417957 that produced enzyme B. The genes were bla (KPC) and bla (NDM) , respectively. The plasmids containing bla (CTX) (-) (M) were conjugatable, and the plasmids containing carbapenem resistance gene were not conjugatable. Six extended-spectrum β-lactamase resistance genes were detected in this research, including bla (TEM), bla (CTX) (-) (M), bla (SHV), bla (OAX) (-) (1), bla (KPC), and bla (NDM) , and the detection rates were 94.89% (130/137), 92.7% (127/137), 24.81% (34/137), 20.43% (28/137), 0.72% (1/137), and 0.72% (1/137), respectively. Two conjugative lncFII multi-resistance plasmids carrying bla (CTX) (-) (M), p11011-fosA and p417957-CTXM, were sequenced and analyzed. Both conjugative plasmids were larger than 100 kb and contained three accessory modules, including MDR region. The MDR region of the two plasmids contained many antibiotic resistance genes, including bla (CTX) (-) (M), mph (A), dfrA17, aadA5, sul1, etc. After transfer, both the transconjugants displayed elevated MICs of the respective antimicrobial agents. A large number of resistance genes clusters in specific regions may contribute to the MDR profile of the strains. The presence of mobile genetic elements at the boundaries can possibly facilitate transfer among Enterobacteriaceae through inter-replicon gene transfer. Our study provides beta-lactam resistance profile of bacteria, reveals the prevalence of β-lactamase resistance genes in livestock and poultry breeding environment in Zhejiang Province, and enriches the research on IncFII plasmids containing bla (CTX) (-) (M). | 2021 | 34867876 |
| 1514 | 18 | 0.9830 | Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally. | 2022 | 34599956 |
| 1524 | 19 | 0.9830 | Characterization of a Novel mcr-8.2-Bearing Plasmid in ST395 Klebsiella pneumoniae of Chicken Origin. The emergence of mobile colistin resistance mcr genes undermines the efficacy of colistin as the last-resort drug for multi-drug resistance infections and constitutes a great public health concern. Plasmids play a critical role in the transmission of mcr genes among bacteria. One colistin-resistant Klebsiella pneumoniae strain of chicken origin was collected and analyzed by antimicrobial susceptibility testing, PCR, conjugation assay and S1-PFGE. Whole-genome sequencing (WGS) approach combining Illumina and MinION platforms was utilized to decipher the underlying colistin resistance mechanism and genetic context. A novel mcr-8.2-bearing plasmid p2019036D-mcr8-345kb with 345 655 bp in size encoding various resistance genes including floR, sul1, aadA16, aadA2, bla (CTX-M-27), bla (DHA-1), tet(D), dfrA12 and qnrB4 was identified responsible for the colistin resistance phenotype. Plasmid comparison has shown that the mcr-8.2-bearing plasmid differed from other reported plasmids positive for mcr-8.2 but shared the same core mcr-8.2-bearing conserved region. This study demonstrates the emergence of mcr-8.2-bearing K. pneumoniae of animal origin is a potential risk to humans. | 2020 | 32606828 |