INVALUABLE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
31700.9875Transgenic hybrid aspen overexpressing the Atwbc19 gene encoding an ATP-binding cassette transporter confers resistance to four aminoglycoside antibiotics. Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens x P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants.201020383769
939210.9874CNproScan: Hybrid CNV detection for bacterial genomes. Discovering copy number variation (CNV) in bacteria is not in the spotlight compared to the attention focused on CNV detection in eukaryotes. However, challenges arising from bacterial drug resistance bring further interest to the topic of CNV and its role in drug resistance. General CNV detection methods do not consider bacteria's features and there is space to improve detection accuracy. Here, we present a CNV detection method called CNproScan focused on bacterial genomes. CNproScan implements a hybrid approach and other bacteria-focused features and depends only on NGS data. We benchmarked our method and compared it to the previously published methods and we can resolve to achieve a higher detection rate together with providing other beneficial features, such as CNV classification. Compared with other methods, CNproScan can detect much shorter CNV events.202134224809
815720.9870Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.202439666857
983230.9869Interplay between the Xer recombination system and the dissemination of antibioresistance in Acinetobacter baumannii. Antibiotic-resistant infections are a pressing clinical challenge. Plasmids are known to accelerate the emergence of resistance by facilitating horizontal gene transfer of antibiotic resistance genes between bacteria. We explore this question in Acinetobacter baumannii, a globally emerging nosocomial pathogen responsible for a wide range of infections with a worrying accumulation of resistance, particularly involving plasmids. In this species, plasmids of the Rep_3 family harbor antibiotic resistance genes within variable regions flanked by potential site-specific recombination sites recognized by the XerCD recombinase. We first show that the Xer system of A. baumannii functions as described in Escherichia coli, resolving chromosome dimers at the dif site and recombining plasmid-carried sites. However, the multiple Xer recombination sites found in Rep_3 plasmids do not allow excision of plasmid fragments. Rather, they recombine to cointegrate plasmids, which could then evolve to exchange genes. Cointegrates represent a significant fraction of the plasmid population and their formation is controlled by the sequence of recombination sites, which determines the compatibility between recombination sites. We conclude that plasmids in A. baumannii frequently recombine by Xer recombination, allowing a high level of yet controlled plasticity in the acquisition and combination of antibiotic resistance genes.202539777461
818340.9869Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
27950.9868In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria.200212089013
909260.9867Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.202438647392
842370.9866Horizontal Gene Transfer From Bacteria and Plants to the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Arbuscular mycorrhizal fungi (AMF) belong to Glomeromycotina, and are mutualistic symbionts of many land plants. Associated bacteria accompany AMF during their lifecycle to establish a robust tripartite association consisting of fungi, plants and bacteria. Physical association among this trinity provides possibilities for the exchange of genetic materials. However, very few horizontal gene transfer (HGT) from bacteria or plants to AMF has been reported yet. In this study, we complement existing algorithms by developing a new pipeline, Blast2hgt, to efficiently screen for putative horizontally derived genes from a whole genome. Genome analyses of the glomeromycete Rhizophagus irregularis identified 19 fungal genes that had been transferred between fungi and bacteria/plants, of which seven were obtained from bacteria. Another 18 R. irregularis genes were found to be recently acquired from either plants or bacteria. In the R. irregularis genome, gene duplication has contributed to the expansion of three foreign genes. Importantly, more than half of the R. irregularis foreign genes were expressed in various transcriptomic experiments, suggesting that these genes are functional in R. irregularis. Functional annotation and available evidence showed that these acquired genes may participate in diverse but fundamental biological processes such as regulation of gene expression, mitosis and signal transduction. Our study suggests that horizontal gene influx through endosymbiosis is a source of new functions for R. irregularis, and HGT might have played a role in the evolution and symbiotic adaptation of this arbuscular mycorrhizal fungus.201829887874
815680.9866Innovative Delivery System Combining CRISPR-Cas12f for Combatting Antimicrobial Resistance in Gram-Negative Bacteria. Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or bla(KPC) genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.202438863339
921290.9865Review of knockout technology approaches in bacterial drug resistance research. Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques.202337605748
8754100.9865Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.202438593377
318110.9865Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.200516116418
9297120.9864Xer recombination for the automatic deletion of selectable marker genes from plasmids in enteric bacteria. Antibiotic resistance genes are widely used to select bacteria transformed with plasmids and to prevent plasmid loss from cultures, yet antibiotics represent contaminants in the biopharmaceutical manufacturing process, and retaining antibiotic resistance genes in vaccines and biological therapies is discouraged by regulatory agencies. To overcome these limitations, we have developed X-markā„¢, a novel technology that leverages Xer recombination to generate selectable marker gene-free plasmids for downstream therapeutic applications. Using this technique, X-mark plasmids with antibiotic resistance genes flanked by XerC/D target sites are generated in Escherichia coli cytosol aminopeptidase (E. coli pepA) mutants, which are deficient in Xer recombination on plasmids, and subsequently transformed into enteric bacteria with a functional Xer system. This results in rapid deletion of the resistance gene at high resolution (100%) and stable replication of resolved plasmids for more than 40 generations in the absence of antibiotic selective pressure. This technology is effective in both Escherichia coli and Salmonella enterica bacteria due to the high degree of homology between accessory sequences, including strains that have been developed as oral vaccines for clinical use. X-mark effectively eliminates any regulatory and safety concerns around antibiotic resistance carryover in biopharmaceutical products, such as vaccines and therapeutic proteins. Graphical Abstract.202235601876
8435130.9864Antimicrobial Zeolitic Imidazolate Frameworks with Dual Mechanisms of Action. The horizontal transfer of drug-resistant genes and the formation of biofilm barriers have threatened the therapeutic efficacy of conventional antibiotic drugs. Development of non-antibiotic agents with high delivery efficiency through bacterial biofilms is urgently required. A pyrithione (PT)-loading zeolitic imidazolate framework (ZIF-8@PT) is synthesized to destroy biofilms and improve the sensitivity of bacteria to PT. ZIF-8@PT can target and destroy the biofilm as well as the cell membrane, promoting the intracellular delivery of PT and possibly its interaction with SmpB, a protein that could regulate the drug resistance of bacteria. ZIF-8@PT effectively suppresses abdominal infections induced by multiresistant Aeromonas veronii C4 in rodent models without systemic toxicity. ZIF-8@PT promises wide applications in treating infections caused by multidrug-resistant bacteria through a dual mechanism of action.202336815744
9394140.9864New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. Since it has been established that the injection of plasmid DNA can lead to an efficient expression of a specific protein in vivo, nonviral gene therapy approaches have been considerably improved, allowing clinical trials. However, the use of antibiotic resistance genes as selection markers for plasmid production raises safety concerns which are often pointed out by the regulatory authorities. Indeed, a horizontal gene transfer to patient's bacteria cannot be excluded, and residual antibiotic in the final product could provoke allergic reactions in sensitive individuals. A new generation of plasmid backbones devoid of antibiotic resistance marker has emerged to increase the safety profile of nonviral gene therapy trials. This article reviews the existing strategies for plasmid maintenance and, in particular, those that do not require the use of antibiotic resistance genes. They are based either on the complementation of auxotrophic strain, toxin-antitoxin systems, operator-repressor titration, RNA markers, or on the overexpression of a growth essential gene. Minicircles that allow removing of the antibiotic resistance gene from the initial vector will also be discussed. Furthermore, reported use of antibiotic-free plasmids in preclinical or clinical studies will be listed to provide a comprehensive view of these innovative technologies.201121878901
9210150.9864Plasmid maintenance systems suitable for GMO-based bacterial vaccines. Live carrier-based bacterial vaccines represent a vaccine strategy that offers exceptional flexibility. Commensal or attenuated strains of pathogenic bacteria can be used as live carriers to present foreign antigens from unrelated pathogens to the immune system, with the aim of eliciting protective immune responses. As for oral immunisation, such an approach obviates the usual loss of antigen integrity observed during gastrointestinal passage and allows the delivery of a sufficient antigen dose to the mucosal immune system. Antibiotic and antibiotic-resistance genes have traditionally been used for the maintenance of recombinant plasmid vectors in bacteria used for biotechnological purposes. However, their continued use may appear undesirable in the field of live carrier-based vaccine development. This review focuses on strategies to omit antibiotic resistance determinants in live bacterial vaccines and discusses several balanced lethal-plasmid stabilisation systems with respect to maintenance of plasmid inheritance and antigenicity of plasmid-encoded antigen in vivo.200515755571
9184160.9864Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.202337770168
8171170.9864Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Multidrug resistance (MDR) in bacteria presents a significant global health threat, driven by the widespread dissemination of antibiotic-resistant genes (ARGs). The CRISPR-Cas system, known for its precision and adaptability, holds promise as a tool to combat antimicrobial resistance (AMR). Although previous studies have explored the use of CRISPR-Cas to target bacterial genomes or plasmids harboring resistance genes, the application of CRISPR-Cas-based antimicrobial therapies is still in its early stages. Challenges such as low efficiency and difficulties in delivering CRISPR to bacterial cells remain. This review provides an overview of the CRISPR-Cas system, highlights recent advancements in CRISPR-Cas-based antimicrobials and delivery strategies for combating AMR. The review also discusses potential challenges for the future development of CRISPR-Cas-based antimicrobials. Addressing these challenges would enable CRISPR therapies to become a practical solution for treating AMR infections in the future.202540440869
8262180.9863Advances in CRISPR-Cas systems for human bacterial disease. Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.202439266183
9584190.9863Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Vector-borne diseases impose enormous health and economical burdens throughout the world. Unfortunately, as insecticide and drug resistance spread, these burdens will increase unless new control measures are developed. Genetically modifying vectors to be incapable of transmitting parasites is one possible control strategy and much progress has been made towards this goal. Numerous effector molecules have been identified that interfere with parasite development in its insect vectors, and techniques for transforming the vectors with genes encoding these molecules have been established. While the ability to generate refractory vectors is close at hand, a mechanism for replacing a wild vector population with a refractory one remains elusive. This review examines the feasibility of using bacteria to deliver the anti-parasitic effector molecules to wild vector populations. The first half briefly examines paratransgenic approaches currently being tested in both the triatomine bug and tsetse fly. The second half explores the possibility of using midgut bacteria to control malaria transmission by Anopheles mosquitoes.200515894187