# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 828 | 0 | 0.9901 | Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns. | 2023 | 37623959 |
| 1455 | 1 | 0.9897 | Resistance to bacterial infection, complication occurring after cardiac surgery. To analyze the occurrence of resistant bacterial infection in patients undergoing cardiac surgery hospitalized in the surgical specialty hospital, in Erbil city, Iraq. A prospective study was done on a total of 138 patients operated and hospitalized in an intensive care unit and surgical wards. Bacterial isolates identification was done according to cultural characteristics, microscopic examination, some biochemical tests, analytic Profile Index 20E& API Staph, confirmed with VITEK® 2 compact system (BioMérieux). Antimicrobial susceptibility for disc diffusion tested to 17 antimicrobial agents. Resistance isolates were confirmed phenotypically for carbapenemase by Rapidec Carba NP Test (bioMe´rieux SA, Marcy-l'E´toile, France) for ESBLs producers by ESBL screening test VITEK 2 system. Molecularly blaIMP blaTEM, blaKPC, AmpC and blaCTX-M were detected by PCR. In 134 patients, 28.3% of patients got infected post-operatively. The most frequent source of isolation was from ICU patients (75%). Isolated bacteria included gram-positive 29 (54.7%) and gram-negative bacteria 24 (45.3%). Most frequently: Staphylococcus aureus (24.4%), each of pseudomonas aeroginosa, Klebsiella pneumonia (15.1%), Streptococcus spp. (11.3%), Escherichia coli (9.4%). Whereas included Coagulase Negative Staphylococci species (CoNS) (13.2%) and Enterococci species (5.7) Statistical analysis showed significantly higher sensitive isolates as compared with resistance isolates. Resistance to Carbapenems calss was 18.9% and Cephalosporins class 41.5% of isolates. The antimicrobial resistance pattern indicated that MDR bacterial isolates (81.1%) were widespread. Of the 34 phenotypically ESBL positive isolates, the ESBL genes (AmpC, blaCTX-M, and blaTEM) were amplified in 7(20.6), 6(17.6) and 6(17.6) isolates respectively. Out of 8 K. pneumonia (37.5%) harboring both blaAmpC and bla-CTX-M genes, while 6(75%) carries blaTEM. The blaCTX-M gene was found in only 1 (12.5%) out of 8 isolates of P. aeruginosa. While blaAmpC genotyping revealed that 1(7.7%) out of 13 Staph. aureus isolates were harboring it. Finally, 3(60%) out of 5 E. coli isolates harboring both AmpC and bla-CTX-M genes. Cardiac surgery patients wound show increasingly emerging strains of ESBL-producing gram-negative bacteria K. pneumonia, P. aeruginosa and E. coli especially patients prolonged in the intensive care unit. | 2020 | 34174972 |
| 1406 | 2 | 0.9896 | Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria. | 2021 | 33824857 |
| 1258 | 3 | 0.9895 | Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures. | 2022 | 36590129 |
| 1428 | 4 | 0.9895 | Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI. | 2018 | 29936619 |
| 2136 | 5 | 0.9895 | Antibiotic profiling of multidrug resistant pathogens in one-day-old chicks imported from Belgium to benin. BACKGROUND: Little data exist on the presence of resistant pathogens in day-old chicks imported into Benin. The occurrence of pathogenic bacteria was assessed in 180 one-day-old chicks imported from Belgium and received at the Cardinal Bernardin Gantin International Airport in Cotonou (Benin). The samples included swabbing the blisters of 180 chicks, followed by 18 pools of 10 swabs for bacterial isolation. Classic bacteriological methods based on Gram staining, culture on specific media and biochemical characterization were used. Antibacterial susceptibility screening to antibiotics was conducted using the Kirby-Bauer disc diffusion method, and the results were interpreted according to guidelines from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). DNA extraction was performed by the heat treatment method. Resistance genes were screened by real-time PCR. RESULTS: We isolated 32 bacteria, including Escherichia coli (50%), Enterococcus spp. (28%), and coagulase-negative staphylococci (10%). The isolates were investigated for antibiotic resistance against antibiotics using the disk diffusion method and showed that in the Escherichia coli strains isolated, the highest rate of resistance was obtained against ciprofloxacin (81%), followed by trimethoprim + sulfamethoxazole (62%). Enterobacter cloacae was sensitive to all the antibiotics tested. Pseudomonas spp. resistant to amoxicillin and trimethoprim + sulfamethoxazole was noted. The SulII gene was found in all cloacal samples, while the SulI and bla(TEM) genes were present at 44.44% and 16.67%, respectively. CONCLUSION: This study confirms that imported day-old chicks can be a potential source of dissemination of resistant bacteria in poultry production. A system for immediate detection of resistant bacteria in chicks upon arrival in the country is thus needed. | 2023 | 36670436 |
| 1458 | 6 | 0.9895 | Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers. | 2018 | 30069306 |
| 2156 | 7 | 0.9894 | Antimicrobial resistance in urinary pathogens and culture-independent detection of trimethoprim resistance in urine from patients with urinary tract infection. BACKGROUND: Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the susceptibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes (dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary pathogens and from urine without culture. METHODS: Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, ciprofloxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94). RESULTS: Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an MIC(90) > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Klebsiella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; NPV = 86.1%). CONCLUSIONS: This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim resistance without the need for culture and susceptibility testing. | 2022 | 35610571 |
| 1475 | 8 | 0.9893 | Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions. | 2020 | 32983057 |
| 2182 | 9 | 0.9893 | Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the bla(CTX-M) gene (62%), bla(TEM) (58%) and bla(CTX-M-2) (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of bla(CTX) (-M) -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa. | 2024 | 38357843 |
| 1454 | 10 | 0.9893 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 1469 | 11 | 0.9893 | Investigation of Bacterial Infections and Antibiotic Resistance Patterns Among Clinical Isolates in the Center of Iran. Introduction: Bacterial infection is a considerable problem in hospitals. Thus, this study was executed to appraise the rampancy of bacterial infections, antimicrobial susceptibility patterns, and molecular characterization of isolates among patients in Bafgh Hospital in Yazd, Iran, in 2020. Methods: In the current study, we surveyed 103 isolates of 400 clinical specimens from early March 2020 to September 2020 in Bafgh Hospital. We assessed phenotypic traits and antibiotic resistance with standard microbiological methods. Phenotypic methods were also performed to identify extended-spectrum beta-lactamases (ESBLs) in Gram-negative bacilli, inducible clindamycin resistance, and methicillin resistance in Staphylococcus according to CLSI guidelines. Molecular identification of isolates was done by conventional PCR 16S rRNA gene sequencing. Furthermore, we investigated the prevalence of resistant genes including bla (TEM), bla (PER-2), bla (CTX-M), bla (SHV), and bla (VEB-1) in Gram-negative bacteria and the mecA gene in staphylococcal species. Results: From 400 different clinical specimens, 103 isolates of Gram-positive and Gram-negative bacteria were isolated. Based on phenotypic and molecular methods, most common isolates were Escherichia coli (53 isolates), followed by Klebsiella spp. (18 isolates), and Staphylococcus aureus (16 isolates). The highest resistance was found in Gram-positive bacteria to erythromycin (66.67%) and penicillin (55.56%), while considering Gram-negative bacteria, the most resistant was cefixime (49.41%) and trimethoprim-sulfamethoxazole (47.05%). In addition, out of 16 S. aureus isolates, 62.5% and 17.65% were resistant to methicillin and clindamycin, respectively. Among 83 Gram-negative isolates, 22.89% were ESBL-positive. The prevalence of bla (SHV), bla (PER2), bla (TEM), bla (CTX-M), and bla (VEB-1) genes was 78.31%, 59.03%, 40.96%, 30.12%, and 0%, respectively. Conclusions: The outbreak of bacterial infections is relatively high in hospitals. Recognizing risk agents for bacterial infections and restricting the administration of multidrug-resistant antibiotics is a substantial measure that must be taken to prevent patient mortality. | 2025 | 40822981 |
| 1457 | 12 | 0.9892 | Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance. | 2021 | 33562276 |
| 1472 | 13 | 0.9892 | Incidence and antibiotic susceptibility profile of uropathogenic Escherichia coli positive for extended spectrum β-lactamase among HIV/AIDS patients in Awka metropolis, Nigeria. BACKGROUND AND OBJECTIVES: This study investigated the incidence and antibiotic susceptibility profile of extended spectrum β-lactamase (ESBL) producing uropathogenic Escherichia coli recovered from HIV/AIDS patients in Awka metropolis, Nigeria. MATERIALS AND METHODS: A total of 363 urine samples were bacteriologically analyzed for the isolation of E. coli isolates which were further characterized using standard microbiology techniques. The isolated uropathogenic E. coli was tested for susceptibility to a range of clinically important antibiotics using the modified disk diffusion technique. All E. coli isolates were phenotypically screened for ESBL production using the combined disk technique, and strains which were positive were further confirmed for the presence of ESBL genes using PCR technique. RESULTS: A total 160 (44.1%) non-duplicate isolates were bacteriologically confirmed to be uropathogenic E. coli (UPEC). The E. coli isolates showed reduced susceptibility to important antibiotics including ceftazidime (76.88%), cefuroxime (77.5%), cefixime (61.88%), amoxicillin-clavulanic (32.5%) and ciprofloxacin (34.38%). Twenty-seven of the UPEC isolates were phenotypically confirmed to be ESBL producers. PCR test confirmed some important genes mediating ESBL production in Gram negative bacteria including bla (TEM) (5.0%) and bla (CTX-M-15) (6.9%) genes. CONCLUSION: We report a high prevalence of ESBL producers among HIV/AIDS patients in Awka, Nigeria. This result is important as antibiotic resistance (ABR) particularly those mediated by multidrug resistant bacteria as reported in this current study could complicate treatment outcome, worsen the individual's health, and even increase cost of treatment and hospitalization. It is therefore important to lookout for ESBL positive UPEC amongst HIV/AIDS patients in Nigeria. | 2022 | 37124857 |
| 1425 | 14 | 0.9892 | Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control. | 2024 | 39172656 |
| 1462 | 15 | 0.9892 | Phenotypic synergy testing of ceftazidime-avibactam with aztreonam in a university hospital having high number of metallobetalactamase producing bacteria. BACKGROUND: Ceftazidime-avibactam combination with aztreonam and role of rapid synergy reporting has not been widely evaluated. Also the synergy correlation with various betalactamases has not been widely studied. METHODS: We studied phenotypic synergy testings and molecular detection of betalactamases in our university hospital where we have large number of mellatobetalactmase producing bacteria. We tested two phenotypic synergy methods for ceftazidime-avibactam with aztreonam (Disc-E strip method, E strip-Agar method) for rapid reporting to clinicians (153 isolates). The treatment (colistin, ceftazidime-avibactam, ceftazidime-avibactam with aztreonam) was guided as indicated in the synergy testings. The resistance genes in bacteria were identified by polymerase chain reaction (PCR) and correlated with synergy results. RESULTS: The highest synergy was seen in Klebsiella pneumoniae by Disc-E strip and E strip-Agar method (86% and 84% respectively). About 70% of Pseudomonas aeruginosa and 29% of Escherichia coli showed synergy. Molecular methods revealed multiple resistance gene combinations and bla(NDM) (96%) was predominant gene in isolates showing synergy. Among isolates that were sensitive to ceftazidime-avibactam, the predominant genes were bla(OXA-48) and bla(IMP.) Rapid laboratory reporting led to proper utilization of antibiotic combinations. CONCLUSIONS: Ceftazidime-avibactam and aztreonam rapid synergy testing will be highly beneficial in treatment of infections by metallobetalactamase producing resistant bacteria, especially K. pneumoniae and P. aeruginosa. | 2020 | 32628575 |
| 1464 | 16 | 0.9892 | Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential. | 2018 | 29778819 |
| 1420 | 17 | 0.9892 | Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BACKGROUND: Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-β-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (bla(IMP-1), bla(IMP-2), bla(VIM-1), bla(VIM-2)) and AmpC (bla(FOX), bla(DHA), bla(CMY), bla(ACC)) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. RESULTS: In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the bla(IMP-1) genes and bla(IMP-2) genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the bla(CMY) genes and bla(FOX) genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. CONCLUSIONS: Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses. | 2021 | 33882823 |
| 1294 | 18 | 0.9892 | Isolation and detection of antibiotics resistance genes of Escherichia coli from broiler farms in Sukabumi, Indonesia. OBJECTIVE: This study aimed to isolate and identify Escherichia coli from broiler samples from Sukabumi, Indonesia. Also, antibiogram studies of the isolated bacteria were carried out considering the detection of the antibiotic resistance genes. MATERIALS AND METHODS: Cloaca swabs (n = 45) were collected from broilers in Sukabumi, Indonesia. Isolation and identification of E. coli were carried out according to standard bacteriological techniques and biochemical tests, followed by confirmation of the polymerase chain reaction targeting the uspA gene. Antibiotic sensitivity test, using several antibiotics [tetracycline (TE), oxytetracycline (OT), ampicillin (AMP), gentamicin (CN), nalidixic acid (NA), ciprofloxacin (CIP), enrofloxacin (ENR), chloramphenicol, and erythromycin] was carried out following the Kirby-Bauer disk diffusion method. Detection of antibiotic resistance coding genes was carried out by PCR using specific oligonucleotide primers. Statistical analysis was carried out with one-way analysis of variance. RESULTS: The results showed that 55.6% (25/45) of the samples were associated with the presence of E. coli. Antibiotic sensitivity test showed that the E. coli isolates were resistant to TE (88%; 22/25), OT (88%; 22/25), AMP (100%; 25/25), CN (64%; 16/25), NA (100%; 22/25), CIP (88%; 22/25), ENR (72%; 18/25), chloramphenicol (0%; 0/25), and erythromycin (92%; 23/25). On the other hand, the antibiotic resistance coding genes were tetA (86.4%; 19/22), blaTEM (100%; 25/25), aac(3)-IV (0%; 0/16), gyrA (100%; 25/25), and ermB (13%; 3/23). It was found that chloramphenicol is markedly different from other antibiotic treatment groups. CONCLUSION: Escherichia coli was successfully isolated from cloacal swabs of broiler in Sukabumi, Indonesia. The bacteria were resistant to TE, OT, AMP, CN, NA, CIP, ENR, and erythromycin. Chloramphenicol was more sensitive and effective than other antibiotics in inhibiting the growth of E. coli. The antibiotic resistance genes detected were tetA, blaTEM, gyrA, and ermB. | 2021 | 33860017 |
| 2196 | 19 | 0.9892 | Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens. | 2025 | 40585877 |