# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9013 | 0 | 0.9951 | Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance. | 2020 | 32770019 |
| 650 | 1 | 0.9949 | Lipoplexes to Deliver Oligonucleotides in Gram-Positive and Gram-Negative Bacteria: Towards Treatment of Blood Infections. Bacterial resistance to antibiotics threatens the ability to treat life-threatening bloodstream infections. Oligonucleotides (ONs) composed of nucleic acid mimics (NAMs) able to inhibit essential genes can become an alternative to traditional antibiotics, as long as they are safely transported in human serum upon intravenous administration and they are carried across the multilayered bacterial envelopes, impermeable to ONs. In this study, fusogenic liposomes were considered to transport the ONs and promote their internalization in clinically relevant bacteria. Locked nucleic acids and 2'-OMethyl RNA were evaluated as model NAMs and formulated into DOTAP-DOPE liposomes followed by post-PEGylation. Our data showed a complexation stability between the post-PEGylated liposomes and the ONs of over 82%, during 24 h in native human serum, as determined by fluorescence correlation spectroscopy. Quantification by a lipid-mixing assay showed that liposomes, with and without post-PEGylation, fused with all bacteria tested. Such fusion promoted the delivery of a fraction of the ONs into the bacterial cytosol, as observed by fluorescence in situ hybridization and bacterial fractionation. In short, we demonstrated for the first time that liposomes can safely transport ONs in human serum and intracellularly deliver them in both Gram-negative and -positive bacteria, which holds promise towards the treatment of bloodstream infections. | 2021 | 34210111 |
| 9741 | 2 | 0.9949 | ARGai 1.0: A GAN augmented in silico approach for identifying resistant genes and strains in E. coli using vision transformer. The emergence of infectious disease and antibiotic resistance in bacteria like Escherichia coli (E. coli) shows the necessity for novel computational techniques for identifying essential genes that contribute to resistance. The task of identifying resistant strains and multi-drug patterns in E. coli is a major challenge with whole genome sequencing (WGS) and next-generation sequencing (NGS) data. To address this issue, we suggest ARGai 1.0 a deep learning architecture enhanced with generative adversarial networks (GANs). We mitigate data scarcity difficulties by augmenting limited experimental datasets with synthetic data generated by GANs. Our in-silico method (augmentation with feature selection) improves the identification of resistance genes in E. coli by using feature extraction techniques to identify valuable features from actual and GAN-generated data. Employing comprehensive validation, we exhibit the effectiveness of our ARGai 1.0 in precisely identifying the informative and resistant genes. In addition, our ARGai 1.0 identifies the resistant strains with a classification accuracy of 98.96 % on Deep Convolutional Generative Adversarial Network (DCGAN) augmented data. Additionally, ARGai 1.0 achieves more than 98 % of sensitivity and specificity. We also benchmark our ARGai 1.0 with several state-of-the-art AI models for resistant strain classification. In the fight against antibiotic resistance, ARGai 1.0 offers a promising avenue for computational genomics. With implications for research and clinical practice, this work shows the potential of deep networks with GAN augmentation as a practical and successful method for gene identification in E. coli. | 2025 | 39813877 |
| 5084 | 3 | 0.9947 | Cloth-based hybridization array system for the identification of antibiotic resistance genes in Salmonella. A simple macroarray system based on the use of polyester cloth as the solid phase for DNA hybridization has been developed for the identification and characterization of bacteria on the basis of the presence of various virulence and toxin genes. In this approach, a multiplex polymerase chain reaction (PCR) incorporating digoxigenin-dUTP is used to simultaneously amplify different marker genes, with subsequent rapid detection of the amplicons by hybridization with an array of probes immobilized on polyester cloth and immunoenzymatic assay of the bound label. As an example of the applicability of this cloth-based hybridization array system (CHAS) in the characterization of foodborne pathogens, a method has been developed enabling the detection of antibiotic resistance and other marker genes associated with the multidrug-resistant food pathogen Salmonella enterica subsp. enterica serotype Typhimurium DT104. The CHAS is a simple, cost-effective tool for the simultaneous detection of amplicons generated in a multiplex PCR, and the concept is broadly applicable to the identification of key pathogen-specific marker genes in bacterial isolates. | 2007 | 18363231 |
| 7813 | 4 | 0.9947 | A framework predicting removal efficacy of antibiotic resistance genes during disinfection processes with machine learning. Disinfection has been applied widely for the removal of antibiotic resistance genes (ARGs) to curb the spread of antibiotic resistance. Quantitative polymerase chain reaction (qPCR) is the most used method to quantify the damage of DNA thus calculating the ARG degradation during disinfection but suffers the deviation due to the limitation of amplicon length. In contrast, transformation assay more accurately measures ARG deactivation based on expression of disinfected ARG in the receiving bacteria but is typically laborious and material-intensive. This work applied machine learning (ML) to develop a framework by using qPCR results as a proxy to estimate the transformation assay measurements during disinfection with chlorine (FAC), ultraviolet (UV(254)), ozone (O(3)), and hydrogen peroxide/ultraviolet (UV/H(2)O(2)) for multiple kinds of ARGs. ARG degradation rates and deactivation rates were well predicted with the optimal correlation coefficient (R(2)) of all test sets > 0.926 and > 0.871, respectively. Besides, by concatenating the ARG degradation and deactivation predictive models, ARG removal efficiency under given disinfection conditions was directly predicted as the loss of transformation activity with R(2) > 0.828. Furthermore, an online platform was built to provide users with access to the developed ML models for rapid and accurate evaluation of ARG removal efficiency. | 2025 | 40179779 |
| 7868 | 5 | 0.9946 | A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti(3)C(2) MXene-Au NPs as a coreactant accelerator. The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti(3)C(2) MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs. | 2023 | 37666010 |
| 8483 | 6 | 0.9946 | Thermodynamic Surface Analyses to Inform Biofilm Resistance. Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited. | 2020 | 33205020 |
| 8860 | 7 | 0.9946 | Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria. | 2020 | 32257371 |
| 312 | 8 | 0.9946 | Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Transgenic techniques are used to enhance and improve crop production, and their application to the production of chemical resources in plants has been under investigation. To achieve this latter goal, multiple-gene transformation is required to improve or change plant metabolic pathways; when accomplished by plant nuclear transformation, however, this procedure is costly and time consuming. We succeeded in the metabolic engineering of the tobacco plant by introducing multiple genes within a bacteria-like operon into a plastid genome. A tobacco plastid was transformed with a polycistron consisting of the spectinomycin resistance gene and three bacterial genes for the biosynthesis of the biodegradable polyester, poly[(R)-3-hydroxybutyrate] (PHB), after modification of their ribosome binding sites. DNA and RNA analysis confirmed the insertion of the introduced genes into the plastid genome and their polycistronic expression. As the result, the transplastomic tobacco accumulated PHB in its leaves. The introduced genes and the PHB productivity were maternally inherited, avoiding genetic spread by pollen diffusion, and were maintained stably in the seed progeny. Despite the low PHB productivity, this report demonstrates the feasibility of transplastomic technology for metabolic engineering. This "phyto-fermentation" system can be applied to plant production of various chemical commodities and pharmaceuticals. | 2004 | 15509840 |
| 8847 | 9 | 0.9946 | Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Temperate phages integrated with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas systems have been gaining attention as potential strategies for combating bacteria resistant to antimicrobials. To further advance this technology, phage recombination procedure should be improved, and the bactericidal effect should be examined in detail and compared with conventional lytic phage strategy. The possibility of the emergence of mutational resistance, a phenomenon commonly observed with lytic phage therapy, should be illustrated. Methods: Here, we developed a novel one-step cloning method to fulfil the recombination of CRISPR/Cas9 system within the genome of a new isolated lysogenic Escherichia coli phage. Then, we proposed and developed a phage-delivered resistance eradication with subsequent antibiotic treatment (PRESA) strategy. The removal efficiency and antimicrobial effect of the plasmids were analysed. Long-term antimicrobial effect was evaluated by continued OD(600) monitoring for 240 hours to illustrate the potential mutational resistance, compared with the lytic phage strategy. The treatment effect of PRESA was evaluated in vivo by determining bacterial loads in the skin and intestine of infected mice, in contrast with lytic phage therapy. Genome sequencing was performed to identify mutations in bacterial cells treated with phage strategies. Results: Phage-delivered CRISPR targeting efficiently eradicated and blocked the transfer of the antibiotic resistance plasmid. PRESA decreased the bacterial load by over 6- and 5-logs in vitro and in vivo, respectively. Importantly, while lytic phages induced mutational phage resistance at 24 h in vitro and 48 hours in vivo, PRESA demonstrated a constant effect and revealed no resistant mutants. Genes involved in DNA mismatch repair were upregulated in cells undergoing Cas9-based plasmid cleavage, which may reduce the development of mutations. Conclusion: The PRESA strategy for eradicating resistant bacteria showed high bactericidal efficacy and a sustained inhibition effect against resistant bacteria. By restoring the efficacy of low-cost antibiotics, PRESA could be developed as an efficient and economical therapy for infections of antibiotic resistant bacteria. | 2020 | 32483454 |
| 6017 | 10 | 0.9945 | Selection of lactic acid bacteria to promote an efficient silage fermentation capable of inhibiting the activity of Aspergillus parasiticus and Fusarium gramineraum and mycotoxin production. AIMS: To select lactic acid bacteria with potential silage inoculant properties. The bio-control activity against mycotoxicogenic fungi and the presence of antibiotics resistance gene were also evaluated. METHODS AND RESULTS: Lactobacillus rhamnosus RC007 and Lactobacillus plantarum RC009 were selected on the basis of growth rate and efficacy in reducing the pH of maize extract medium; therefore, they were evaluated for their bio-control ability against Fusarium graminearum and Aspergillus parasiticus. Studies on lag phase, growth rate and aflatoxin B1 (AFB1) and zearalenone (ZEA) production were carried out in vitro under different regimes of aw (0·95 and 0·99); pH (4 and 6); temperature (25 and 37°C); and oxygen availability (normal and reduced). Lactobacillus rhamnosus RC007 was able to completely inhibit the F. graminearum growth at all assayed conditions, while Lact. plantarum RC009 only did it at pH 4. Both Lactobacillus strains were able to significantly reduce the A. parasiticus growth rate mainly at 0·99 aw . A decrease in ZEA production was observed as result of Lactobacillus strains -F. graminearum interaction; however, the A. parasiticus- Lact. plantarum interaction resulted in an increased AFB1 production. Lactobacillus rhamnosus RC007 proved to have no genes for resistance to the tested antibiotics. CONCLUSIONS: The ability of Lact. rhamnosus RC007 to rapidly drop the pH and to inhibit fungal growth and mycotoxin production and the absence of antibiotic resistance genes shows the potential of its application as inoculant and bio-control agent in animal feed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the importance of selecting bacteria for silage inoculants not only for the improvement of silage fermentation but also for their effects on mycotoxicogenic fungi and the resulting mycotoxin production due to the risk that they may involve. | 2013 | 23437822 |
| 8907 | 11 | 0.9945 | Development of bacterial resistance induced by low concentration of two-dimensional black phosphorus via mutagenesis. The wide use of nano-antibacterial materials has triggered concerns over the development of nanomaterials-associated bacterial resistance. Two-dimensional (2D) black phosphorus (BP) as a new class of emerging 2D nanomaterial has displayed excellent antibacterial performance. However, whether bacteria repeatedly exposed to 2D BP can develop resistance is not clear. We found that wild type E. coli K-12 MG 1655 strains can increase resistance to 2D-BP nanosheets after repeated exposure with subinhibitory concentration of 2D-BP nanosheets. Adaptive morphogenesis including the reinforced barrier function of cell membrane were observed in the resistant bacteria, which enhanced the resistance of bacteria to 2D-BP nanosheets. The whole-genome sequencing analysis showed that the three mutation genes including dmdA, mntP, and gyrA genes were observed in the 2D-BP resistant strains, which controlled catabolism, membrane structure, and DNA replication, respectively. Furthermore, transcriptional sequencing confirmed that these genes related to metabolization, membrane structure, and cell motility were upregulated in the 2D-BP resistant bacteria. The development of resistance to 2D-BP in bacteria mainly attributed to the changes in energy metabolism and membrane structure of bacteria caused by gene mutations. In addition, the up-regulated function of cell motility also helped the bacteria to develop resistance by escaping external stimuli. The results provided new evidence for understanding an important effect of nano-antibacterial materials on the development of bacterial resistance. | 2022 | 35733674 |
| 8678 | 12 | 0.9945 | Metagenomics-Guided Discovery of Potential Bacterial Metallothionein Genes from the Soil Microbiome That Confer Cu and/or Cd Resistance. Metallothionein (MT) genes are valuable genetic materials for developing metal bioremediation tools. Currently, a limited number of prokaryotic MTs have been experimentally identified, which necessitates the expansion of bacterial MT diversity. In this study, we conducted a metagenomics-guided analysis for the discovery of potential bacterial MT genes from the soil microbiome. More specifically, we combined resistance gene enrichment through diversity loss, metagenomic mining with a dedicated MT database, evolutionary trace analysis, DNA chemical synthesis, and functional genomic validation to identify novel MTs. Results showed that Cu stress induced a compositional change in the soil microbiome, with an enrichment of metal-resistant bacteria in soils with higher Cu concentrations. Shotgun metagenomic sequencing was performed to obtain the gene pool of environmental DNA (eDNA), which was subjected to a local BLAST search against an MT database for detecting putative MT genes. Evolutional trace analysis led to the identification of 27 potential MTs with conserved cysteine/histidine motifs different from those of known prokaryotic MTs. Following chemical synthesis of these 27 potential MT genes and heterologous expression in Escherichia coli, six of them were found to improve the hosts' growth substantially and enhanced the hosts' sorption of Cu, Cd, and Zn, among which MT5 led to a 13.7-fold increase in Cd accumulation. Furthermore, four of them restored Cu and/or Cd resistance in two metal-sensitive E. coli strains.IMPORTANCE The metagenomics-guided procedure developed here bypasses the difficulties encountered in classic PCR-based approaches and led to the discovery of novel MT genes, which may be useful in developing bioremediation tools. The procedure used here expands our knowledge on the diversity of bacterial MTs in the environment and may also be applicable to identify other functional genes from eDNA. | 2020 | 32111593 |
| 4741 | 13 | 0.9945 | Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Titanium dioxide-modified target plates were developed to enhance intact bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The plates were designed to photocatalytically destroy the bacterial envelope structure and improve the ionization efficiency of intracellular components, thereby promoting the measurable mass range and the achievable detection sensitivity. Accordingly, a method for rapid detection of antimicrobial resistance-associated proteins, conferring bacterial resistance against antimicrobial drugs, was established by mass spectrometric fingerprinting of intact bacteria without the need for any sample pre-treatment. With this method, the variations in resistance proteins' expression levels within bacteria were quickly measured from the relative peak intensities. This approach of resistance protein detection directly from intact bacteria by mass spectrometry is useful for fast discrimination of antimicrobial-resistant bacteria from their non-resistant counterparts whilst performing species identification. Also, it could be used as a rapid and convenient way for initial determination of the underlying resistance mechanisms. | 2018 | 29719694 |
| 4765 | 14 | 0.9944 | Enhancing the Antibacterial Impact of Lipopeptide Extracted from Bacillus licheniformis as a Probiotic against MDR Acinetobacter baumannii. BACKGROUND: The antibiotic resistance of microorganisms is escalating rapidly. Infections caused by opportunistic pathogens in immunocompromised individuals have prompted researchers to seek for potent and safe antibacterial agents. The purpose of this investigation was to explore the suppression of virulence gene expression, specifically the pga operon genes responsible in biofilm formation in Acinetobacter baumannii, through the utilization of metabolites obtained from probiotic bacteria. METHODS: To assess the antimicrobial properties, standard strains of five probiotic bacteria were tested against a standard strain of multidrug-resistant (MDR) A. baumannii employing the agar gel diffusion technique. Following the identification of the most potent probiotic strain (Bacillus licheniformis), the existence of its LanA and LanM genes was confirmed using the polymerase chain reaction (PCR) test. High-performance liquid chromatography (HPLC) and fourier-transform infrared spectroscopy (FTIR) techniques were employed to identify the intended metabolite, which was found to be a lipopeptide nature. The minimum inhibitory concentration (MIC) values and anti-biofilm activity of the targeted metabolite were determined using a dilution method in 96-well microplates and field emission scanning electron microscopy (FE-SEM). Real-time PCR (qPCR) was utilized for comparing the expression of pga operon genes, including pgaABCD, in A. baumannii pre- and post-exposure to the derived lipopeptide. RESULTS: The MIC results indicated that the probiotic product inhibited the growth of A. baumannii at concentrations lower than those needed for conventional antibiotics. Furthermore, it was observed that the desired genes' expression decreased due to the effect of this substance. CONCLUSIONS: This research concludes that the B. licheniformis probiotic product could be a viable alternative for combating drug resistance in A. baumannii. | 2024 | 38812307 |
| 320 | 15 | 0.9944 | Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work. | 2002 | 12084480 |
| 6305 | 16 | 0.9944 | Antimicrobial genes from Allium sativum and Pinellia ternata revealed by a Bacillus subtilis expression system. Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes. | 2018 | 30266995 |
| 9211 | 17 | 0.9944 | Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1). | 2013 | 24051431 |
| 8973 | 18 | 0.9944 | Enhanced myco-synthesis of selenium and zinc oxide nanoparticles and evaluating their anticancer activities and role against antibiotic resistance genes in certain bacterial strains. BACKGROUND: In an array to check microbial resistance against generally used antibiotics, it is essential to create innovative and efficient antimicrobial agents. Therefore, nanoparticles (NPs) with their antimicrobial activities describe an effective solution. In this study, we synthesized Selenium nanoparticles (Se-NPs) and zinc oxide nanoparticles (ZnO-NPs) using Alternaria alternata fungus, then their characterization were evaluated using several techniques. RESULTS: We explored the potential of antimicrobial impact of Se-NPs and ZnO-NPs against negative and positive grams antibiotic resistance bacterial strains in combination with penicillin, Ceftriaxone and Cefipime. Moreover, antibiotic resistance gene expression was assessed after those treatments. The results demonstrated that Se-NPs and ZnO-NPs displayed antibacterial properties, while the expression of antibiotic resistance genes decreased when exposed to a combination of NPs and antibiotics. This suggests the presence of both synergistic and additive effects in these treatments. Furthermore, the cytotoxic effects of Se-NPs and ZnO-NPs were assessed, revealing their potent anticancer properties against MCF-7, A549, and HepG2 cancer cells and lower cytotoxic values for HFB-4 standard cell line. Ultimately, the production efficiency of both NPs was enhanced through gamma irradiation. CONCLUSIONS: According to the results, it seems that the green synthesis of Se-NPs and ZnO-NPs promotes environmental sustainability and cost-effective approach. This study provides insights into the development of new antibacterial and anticancer agents . The eco-friendly production of nanoparticles suggests also a sustainable approach to combating bacteria resistant to antibiotics. | 2025 | 41046259 |
| 8463 | 19 | 0.9944 | Safety assessment of five candidate probiotic lactobacilli using comparative genome analysis. Micro-organisms belonging to the Lactobacillus genus complex are often used for oral consumption and are generally considered safe but can exhibit pathogenicity in rare and specific cases. Therefore, screening and understanding genetic factors that may contribute to pathogenicity can yield valuable insights regarding probiotic safety. Limosilactobacillus mucosae LM1, Lactiplantibacillus plantarum SK151, Lactiplantibacillus plantarum BS25, Limosilactobacillus fermentum SK152 and Lactobacillus johnsonii PF01 are current probiotics of interest; however, their safety profiles have not been explored. The genome sequences of LM1, SK151, SK152 and PF01 were downloaded from the NCBI GenBank, while that of L. plantarum BS25 was newly sequenced. These genomes were then annotated using the Rapid Annotation using Subsystem Technology tool kit pipeline. Subsequently, a command line blast was performed against the Virulence Factor Database (VFDB) and the Comprehensive Antibiotic Resistance Database (CARD) to identify potential virulence factors and antibiotic resistance (AR) genes. Furthermore, ResFinder was used to detect acquired AR genes. The query against the VFDB identified genes that have a role in bacterial survivability, platelet aggregation, surface adhesion, biofilm formation and immunoregulation; and no acquired AR genes were detected using CARD and ResFinder. The study shows that the query strains exhibit genes identical to those present in pathogenic bacteria with the genes matched primarily having roles related to survival and surface adherence. Our results contribute to the overall strategies that can be employed in pre-clinical safety assessments of potential probiotics. Gene mining using whole-genome data, coupled with experimental validation, can be implemented in future probiotic safety assessment strategies. | 2024 | 38361650 |