INTERMEDIATE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
540900.9972Presence and new genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Erysipelothrix rhusiopathiae of swine origin. Erysipelothrix rhusiopathiae is a Gram-positive bacillus that causes erysipelas in swine. In recent years, erysipelas infection among swine in China has been increasing. A combined resistance phenotype to pleuromutilins, lincosamides, and streptogramin A (PLSA phenotype) was found in some E. rhusiopathiae isolates. The aim of this study was to identify the resistance genes responsible for the PLSA phenotype in E. rhusiopathiae strains and to map the genetic environment of the identified resistance gene. A total of 46 E. rhusiopathiae isolates from 31 pig farms in China were studied. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by broth microdilution method. Seven were highly resistant to tiamulin (MICs 32 μg/ml) and clindamycin (MICs 64 μg/ml). Resistance genes responsible for the PLSA phenotype were screened by PCR. The lsa(E), spw, lnu(B), aadE and aphA3 genes were detected in strains had the PLSA phenotype, whereas none was detected in susceptible strains. The genetic environment of lsa(E) gene was determined by whole-genome sequencing and overlapping PCR assays. A novel multiresistance gene cluster, orf1-aadE-apt-spw-lsa(E)-lnu(B)-rec-orf2-orf1-aadE-sat4-aphA3, was found. Horizontal gene transfer experiments and whole-genome sequencing suggested that the lsa(E)-carrying multiresistance gene cluster was located in the chromosome. This is the first molecular characterization of PLSA resistance in E. rhusiopathiae. The lsa(E), spw and lnu(B) genes were found in E. rhusiopathiae for the first time. A novel lsa(E)-carrying multiresistance gene cluster was found. The location of lsa(E) in different gene cluster facilitates its persistence and dissemination.201525759293
586610.9970tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. OBJECTIVES: Tetracycline-resistant Mannheimia and Pasteurella isolates, which were negative for the tetracycline resistance genes (tet) commonly detected among these bacteria, were investigated for other tet genes present and their location. METHODS: Mannheimia and Pasteurella isolates were investigated for their MICs of tetracycline and their plasmid content. Identification of tet genes was achieved by PCR. Plasmids mediating tetracycline resistance were identified by transformation and hybridization experiments. Plasmid pCCK3259 from Mannheimia haemolytica was sequenced completely and analysed for its structure and organization. RESULTS: All tetracycline-resistant isolates carried the gene tet(L) either on plasmids or on the chromosome. Two M. haemolytica isolates and one Mannheimia glucosida isolate harboured a common 5.3 kb tet(L) plasmid, designated pCCK3259. This plasmid was similar to the tet(B)-carrying tetracycline resistance plasmid pHS-Tet from Haemophilus parasuis and the streptomycin/spectinomycin resistance plasmid pCCK647 from Pasteurella multocida in the parts coding for mobilization functions. The tet(L) gene was closely related to that of the Geobacillus stearothermophilus plasmid pTB19. However, the translational attenuator responsible for the tetracycline-inducible expression of tet(L) was missing in plasmid pCCK3259. A recombination site was identified downstream of tet(L), which might explain the integration of the tet(L) gene region into a basic pCCK3259 replicon. CONCLUSION: A tet(L) gene was shown for the first time to be responsible for tetracycline resistance in Mannheimia and Pasteurella isolates. This report demonstrates a lateral transfer of a tetracycline efflux gene in Gram-negative bovine respiratory tract pathogens, probably originating from Gram-positive bacteria.200515972309
540820.9970Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. One hundred and seven Streptococcus suis isolates were collected from healthy pigs or asymptomatic carriers in Jiangsu, China in 2016-2017. Thirty-eight percent of the isolates were linezolid-resistant and all carried the optrA gene. Among them, one isolate, SFJ44, was resistant to all 20 of the antibiotics tested, except for ceftiofur, and thus exhibited an extensively-drug-resistant phenotype. This isolate carried the optrA gene and the bacitracin resistance locus bcrABDR on an antibiotic-resistance-associated genomic island (ARGI1), and harboured the resistance genes cfr, aadE, sat4, spw-like, aphA3, mef(A), msr(D), erm(A)-like, erm(B), tetAB(P)', tet(M) and catQ on ARGI2∼4. The IS1216E-bcrABDR-ISEnfa1 segment showed >99.9% sequence identity to corresponding sequences from other species. The cfr gene was located on ARGI4, and two IS6 family insertion sequences, IS1216E and ISTeha2, were found upstream and downstream of cfr-ΔISEnfa5, respectively. A circular intermediate of bcrABDR-ISEnfa1 was detected, suggesting the role of ISEnfa1 in dissemination of bcrABDR. Other antibiotic resistance genes might be acquired from different Gram-positive pathogens. Infection of zebrafish showed that SFJ44 exhibited a virulence level comparable to serotype 2 hypervirulent strain SC070731, highlighting the need for surveillance of the pathogenicity of multi-drug-resistant S. suis isolates. This is the first report of the co-existence of optrA and cfr, and of the bcrABDR locus in streptococci. As it has been suggested that S. suis may act as an antibiotic resistance reservoir contributing to the spread of resistance genes to major streptococcal pathogens, the potential dissemination of these resistance genes among Gram-positive bacteria is of concern and routine surveillance should be strengthened.201930981924
584930.9970Characterisation and molecular cloning of the novel macrolide-streptogramin B resistance determinant from Staphylococcus epidermidis. A total of 110 staphylococcal isolates from human skin were found to express a novel type of erythromycin resistance. The bacteria were resistant to 14-membered ring macrolides (MIC 32-128 mg/l) but were sensitive to 16-membered ring macrolides and lincosamides. Resistance to type B streptogramins was inducible by erythromycin. A similar phenotype, designated MS resistance, was previously described in clinical isolates of coagulase-negative staphylococci from the USA. In the UK, MS resistance is widely distributed in coagulase-negative staphylococci but was not detected in 100 erythromycin resistant clinical isolates of Staphylococcus aureus. Tests for susceptibility to a further 16 antibiotics failed to reveal any other selectable marker associated with the MS phenotype. Plasmid pattern analysis of 48 MS isolates showed considerable variability between strains and no common locus for the resistance determinant. In one strain of S. epidermidis co-resistance to tetracycline, penicillin and erythromycin (MS) was associated with a 31.5 kb plasmid, pUL5050 which replicated and expressed all three resistances when transformed into S. aureus RN4220. The MS resistance determinant was localised to a 1.9 kb fragment which was cloned on to the high-copy-number vector, pSK265. A constitutive mutant of S. aureus RN4220 containing the 1.9 kb fragment remained sensitive to clindamycin. This observation, together with the concentration-dependent induction (optimum 5 mg/l of erythromycin) of virginiamycin S resistance suggests that the MS phenotype is not due to altered expression of MLS resistance determinants (erm genes) but probably occurs via a different mechanism.19892559912
522940.9969Paradoxical High-Level Spiramycin Resistance and Erythromycin Susceptibility due to 23S rRNA Mutation in Streptococcus constellatus. Objectives: The aim of the study was to characterize phenotypically and genotypically an uncommon mechanism of resistance to macrolides, lincosamides, and streptogramins (MLS) in a Streptococcus milleri group clinical isolate. Materials and Methods: The isolate UCN96 was recovered from an osteoradionecrosis wound, and was identified using the matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and the partial sequencing of the sodA gene. Antimicrobial susceptibility testing were carried out by the disk diffusion method and minimal inhibitory concentrations (MICs) were determined by the broth microdilution technique. PCR screening was performed for MLS resistance genes described in Gram-positive bacteria. Specific mutations in the ribosomal proteins L3-, L4-, and L22-encoding genes were also screened and those in domain V of the 23S rRNA gene (rrl). The number of mutated copies of the rrl gene was determined using amplification-refractory mutation system quantitative-polymerase chain reaction (qPCR) analysis. Results: The clinical isolate UCN96 was unambiguously identified as Streptococcus constellatus. It was susceptible to all macrolides and lincosamides (ML) antibiotics except spiramycin (MIC >256 mg/L) while it was also resistant to streptogramins. Screening for all acquired resistance genes was negative and no mutation was found in genes coding for L3, L4, and L22 ribosomal proteins. Of interest, a single mutation, A2062C (according to Escherichia coli numbering), was detected in the domain V of 23S rRNA. Conclusion: Mutations at the position 2062 of 23S rRNA have been detected once in Streptococcus pneumoniae, and not yet in other Streptococcus spp. This mechanism is very likely uncommon in Gram-positive bacteria because different copies of 23S rRNA operons should be mutated for development of such a resistance pattern.202032031922
591250.9968Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. The spread of antibiotic resistance is a major public health concern worldwide. Commensal bacteria from the human genitourinary tract can act as reservoirs of resistance genes playing a role in their transfer to pathogens. In this study, the minimum inhibitory concentration of 16 antibiotics to 15 isolates from the human vagina, identified as Enterococcus faecalis, Streptococcus anginosus, and Streptococcus salivarius, was determined. Eight isolates were considered resistant to tetracycline, five to clindamycin and quinupristin-dalfopristin, and four to rifampicin. To investigate the presence of antimicrobial resistance genes, PCR analysis was performed in all isolates, and five were subjected to whole-genome sequencing analysis. PCR reactions identified tet(M) in all tetracycline-resistant E. faecalis isolates, while both tet(M) and tet(L) were found in tetracycline-resistant S. anginosus isolates. The tet(M) gene in E. faecalis VA02-2 was carried within an entire copy of the transposon Tn916. In S. anginosus VA01-10AN and VA01-14AN, the tet(M) and tet(L) genes were found contiguous with one another and flanked by genes encoding DNA mobilization and plasmid replication proteins. Amplification and sequencing suggested the lsaA gene to be complete in all E. faecalis isolates resistant to clindamycin and quinupristin-dalfopristin, while the gene contain mutations rendering to a non-functional LsaA in susceptible isolates. These results were subsequently confirmed by genome analysis of clindamycin and quinupristin-dalfopristin resistant and susceptible E. faecalis strains. Although a clinical breakpoint to kanamycin for S. salivarius has yet to be established, S. salivarius VA08-2AN showed an MIC to this antibiotic of 128 μg mL(-1). However, genes involved in kanamycin resistance were not identified. Under the assayed conditions, neither tet(L) nor tet(M) from either E. faecalis or S. anginosus was transferred by conjugation to recipient strains of E. faecalis, Lactococcus lactis, or Lactobacillus plantarum. Nonetheless, the tet(L) gene from S. anginosus VA01-10AN was amplified by PCR, and cloned and expressed in Escherichia coli, to which it provided a resistance of 48-64 μg mL(-1) to tetracycline. Our results expand the knowledge of the antibiotic resistance-susceptibility profiles of vaginal bacteria and provide the genetic basis of their intrinsic and acquired resistance.202032695087
594060.9968In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. OBJECTIVES: Prior to the renewal of spectinomycin licensing for veterinary uses in Germany, 154 Pasteurella multocida and 148 Mannheimia haemolytica strains from respiratory tract infections in cattle were investigated for their MICs of spectinomycin and other antimicrobial agents. The data obtained should serve as a baseline from which to judge the future development of resistance. Moreover, the in vitro activity of spectinomycin in comparison with other antimicrobials should be assessed. METHODS: MIC determination for all 302 strains was performed by the broth dilution method and evaluated according to NCCLS standards. MIC(50) and MIC(90) values were calculated. Strains resistant to spectinomycin were subjected to PCR assays for genes known to mediate spectinomycin resistance in Gram-negative and Gram-positive bacteria. RESULTS: With the exception of resistance to sulfamethoxazole in P. multocida and M. haemolytica, and resistance to ampicillin in M. haemolytica, an overall low level of resistance was detected. A total of 93.5% of the P. multocida and 98.6% of the M. haemolytica strains were susceptible to spectinomycin, with MIC(90)s of 32 mg/L. PCR analysis showed that none of the spectinomycin-resistant strains carried any of the aadA gene subtypes, nor the genes spc or aad(9). CONCLUSIONS: Prior to the renewal of spectinomycin, only a small number of spectinomycin-resistant strains was detected among bovine P. multocida and M. haemolytica. The genes responsible for spectinomycin resistance in these strains seemed to be different from those so far known to occur in other Gram-negative and Gram-positive bacteria.200414729757
537570.9968Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression.202032523563
541180.9968Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ')-III in commensal viridans group streptococci. High-level aminoglycoside resistance was assessed in 190 commensal erythromycin-resistant alpha-hemolytic streptococcal strains. Of these, seven were also aminoglycoside-resistant: one Streptococcus mitis strain was resistant to high levels of kanamycin and carried the aph(3 ')-III gene, four S. mitis strains were resistant to high levels of streptomycin and lacked aminoglycoside-modifying enzymes, and two S. oralis strains that were resistant to high levels of kanamycin and streptomycin harbored both the aph(3 ')-III and the ant(6) genes. The two S. oralis strains also carried the ant(6)-sat4- aph(3 ' ')-III aminoglycoside-streptothricin resistance gene cluster, but it was not contained in a Tn5405-like structure. The presence of this resistance gene cluster in commensal streptococci suggests an exchange of resistance genes between these bacteria and enterococci or staphylococci.200717407061
599090.9967Presence of the resistance genes vanC1 and pbp5 in phenotypically vancomycin and ampicillin susceptible Enterococcus faecalis. Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.201222524613
5981100.9967Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive.19968723458
5413110.9967First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. The trimethoprim resistance gene dfrK has been recently described in Staphylococcus aureus, but so far has not been found in other bacteria. A total of 166 enterococci of different species (E. faecium, E. faecalis, E. hirae, E. durans, E. gallinarum, and E. casseliflavus) and origins (food, clinical diseases in humans, healthy humans or animals, and sewage) were studied for their susceptibility to trimethoprim as determined by agar dilution (European Committee on Antimicrobial Susceptibility Testing) and the presence of (a) the dfrK gene and its genetic environment and (b) other dfr genes. The dfrK gene was detected in 49% of the enterococci (64% and 42% of isolates with minimum inhibitory concentrations of ≥2 mg/L or ≤1 mg/L, respectively). The tet(L)-dfrK linkage was detected in 21% of dfrK-positive enterococci. The chromosomal location of the dfrK gene was identified in one E. faecium isolate in which the dfrK was not linked to tet(L) gene but was part of a Tn559 element, which was integrated in the chromosomal radC gene. This Tn559 element was also found in 14 additional isolates. All combinations of dfr genes were detected among the isolates tested (dfrK, dfrG, dfrF, dfrK+dfrG, dfrK+dfrF, dfrF+dfrG, and dfrF+dfrG+dfrK). The gene dfrK gene was found together with other dfr genes in 58% of the tested enterococci. This study suggested an exchange of the trimethoprim resistance gene dfrK between enterococci and staphylococci, as previously observed for the trimethoprim resistance gene dfrG.201221718151
5941120.9967Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. OBJECTIVES: to determine the mechanism(s) of macrolide resistance in Haemophilus influenzae isolated from cystic fibrosis (CF) patients participating in a randomized placebo-controlled trial of azithromycin. METHODS: macrolide susceptibility, mutations and carriage of the macrolide resistance genes erm(A), erm(B), erm(C), erm(F) and mef(A) were determined using PCR assays and sequencing or hybridization of the PCR products. H. influenzae isolates were used as donors in conjugation studies with H. influenzae and Enterococcus faecalis recipients. Transconjugant susceptibility and the macrolide resistance genes carried were determined. RESULTS: of the 106 H. influenzae isolates, 27 were resistant and 78 intermediate resistant to azithromycin and/or erythromycin. All isolates carried one or more macrolide resistance gene(s), with the mef(A), erm(B) and erm(F) genes found in 74%, 31% and 29% of the isolates, respectively. None of the selected isolates had L4 or L22 mutations. Twenty-five donors, with various macrolide MICs, transferred macrolide resistance genes to H. influenzae Rd (3.5 × 10(-7)-1 × 10(-10)) and/or E. faecalis (1 × 10(-7)-1 × 10(-8)) recipients. The H. influenzae transconjugants were phenotypically resistant or intermediate to both macrolides while E. faecalis transconjugants were erythromycin resistant. CONCLUSIONS: this is the first identification of erm(A), erm(C) and erm(F) genes in H. influenzae or bacteria from CF patients and the first characterization of macrolide gene transfer from H. influenzae donors. The high level of H. influenzae macrolide gene carriage suggests that the use of azithromycin in the CF population may ultimately reduce the effectiveness of continued or repeated macrolide therapy.201121081549
5396130.9967Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products.201830485765
5852140.9967A novel transposon, Tn6009, composed of a Tn916 element linked with a Staphylococcus aureus mer operon. OBJECTIVES: The aim of this study was to characterize a novel conjugative transposon Tn6009 composed of a Tn916 linked to a Staphylococcus aureus mer operon in representative Gram-positive and Gram-negative bacteria isolated in Nigeria and Portugal. METHODS: Eighty-three Gram-positive and 34 Gram-negative bacteria were screened for the presence of the Tn6009 using DNA-DNA hybridization, PCR, hybridization of PCR products, sequencing and mating experiments by established procedures. RESULTS: Forty-three oral and 23 urine Gram-negative and Gram-positive isolates carried the Tn6009. Sequencing was performed to verify the direct linkage between the mer resistance genes and the tet(M) gene. A Nigerian Klebsiella pneumoniae, isolated from a urinary tract infection patient, and one commensal isolate from each of the other Tn6009-positive genera, Serratia liquefaciens, Pseudomonas sp., Enterococcus sp. and Streptococcus sp. isolated from the oral and urine samples of healthy Portuguese children, were able to act as donors and conjugally transfer the Tn6009 to the Enterococcus faecalis JH2-2 recipient, resulting in tetracycline- and mercury-resistant E. faecalis transconjugants. CONCLUSIONS: This study reports a novel non-composite conjugative transposon Tn6009 containing a Tn916 element linked to an S. aureus mer operon carrying genes coding for inorganic mercury resistance (merA), an organic mercury resistance (merB), a regulatory protein (merR) and a mercury transporter (merT). This transposon was identified in 66 isolates from two Gram-positive and three Gram-negative genera and is the first transposon in the Tn916 family to carry the Gram-positive mer genes directly linked to the tet(M) gene.200818583328
5461150.9967Molecular characteristics and comparative genomics analysis of a clinical Enterococcus casseliflavus with a resistance plasmid. PURPOSE: The aim of this work was to investigate the molecular characterization of a clinical Enterococcus casseliflavus strain with a resistance plasmid. MATERIALS AND METHODS: En. casseliflavus EC369 was isolated from a patient in a hospital in southern China. The minimum inhibitory concentration was found by means of the agar dilution method to determine the antimicrobial susceptibilities of the strains. Whole-genome sequencing and comparative genomics analysis were performed to analyze the mechanism of antibiotic resistance and the horizontal gene transfer of the resistance gene-related mobile genetic elements. RESULTS: En. casseliflavus EC369 showed resistance to erythromycin, kanamycin, and streptomycin, but was susceptible to vancomycin, ampicillin, and streptothricin and other antimicrobials. There were six resistance genes (aph3', ant6, bla, sat4, and two ermBs) carried by a transposon identified on the plasmid pEC369 and a complete resistance gene cluster of vancomycin and a tet (M) gene encoded on the chromosome. This is the first complete plasmid sequence reported in clinically isolated En. casseliflavus. The plasmid with the greatest sequence identity with pEC369 was the plasmid of Enterococcus sp. FDAARGOS_375, followed by the plasmids of Enterococcus faecium strains F12085 and pRE25, whereas the sequence with the greatest identity to the resistance genes carrying a transposon of pEC369 was on the chromosome of Staphylococcus aureus strain GD1677. CONCLUSION: The resistance profiles of En. casseliflavus EC369 might contribute to the resistance genes encoded on the plasmid. The fact that the most similar sequence to the transposon carrying resistance genes of pEC369 was encoded in the chromosome of a S. aureus strain provides insights into the mechanism of dissemination of multidrug resistance between bacteria of different species or genera through horizontal gene transfer.201830464559
5405160.9967Characterization of florfenicol resistance genes in the coagulase-negative Staphylococcus (CoNS) isolates and genomic features of a multidrug-resistant Staphylococcus lentus strain H29. BACKGROUND: With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria's resistance to florfenicol. METHODS: The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method, and polymerase chain reaction was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug resistant strain, Staphylococcus lentus H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed. RESULTS: As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels to florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 fexA, 6 cfr and 5 fexB genes) with one carrying a cfr gene, 16 each harboring a fexA gene, 5 with both a fexA gene and a fexB gene and the other 5 with both a fexA gene and a cfr gene. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a fexA gene each. The whole genome sequence of S. lentus H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)] encoded on the chromosome, 4 genes [cfr, fexA, aacA-aphD and tcaA] on pH29-46 and 1 gene (fosD) on pH29-26. We found that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5671 bp) and IS256-cfr (2690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome. CONCLUSIONS: The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report that one S. lentus strain carried two identical copies of florfenicol resistance-related gene arrays.202133413633
2440170.9967Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).201626253583
5393180.9967Characterization and Transferability of erm and tet Antibiotic Resistance Genes in Lactobacillus spp. Isolated from Traditional Fermented Milk. Lactobacillus is a widely used bacteria and consumed through various fermented foods and beverages. Strains have been shown to carry resistance genes and mobile genetic elements with their ability to transfer the resistance to sensitive pathogenic strains. To study this, 4 cultures of Lactobacillus were isolated from traditional fermented milk. The isolates were able to grow up to 4% (w/v) NaCl concentration and 45 °C temperature, and showed > 97% 16S rRNA gene similarities with Lactobacillus fermentum. All the isolates were phenotypically screened for the presence of antibiotic resistance. Minimum inhibitory concentration (MIC) as microbiological breakpoints were observed against a varied class of antibiotics. Isolates AKO 94.6, DVM 95.7, and NIFTEM 95.8 were explicitly resistant to ampicillin, ciprofloxacin and vancomycin with MIC well beyond the maximum range of 256 µg/ml in the E-strip test. While isolate SKL1 was sensitive to ampicillin and showed MIC at 0.25 µg/ml but resistant to streptomycin and trimethoprim (MIC > 256 µg/ml). Molecular characterization showed the presence of tet(M) gene in three isolates SKL1, DVM 95.7, and NIFTEM 95.8 which was chromosomally associated resistance determinants while erm(B) resistance gene was detected in isolates DVM 95.7 and NIFTEM 95.8 only which was a plasmid associated gene and could be transferrable conjugally. Gene for Tn916 family (xis) was also observed in isolates DVM 95.7 and NIFTEM 95.8. Transferability of antibiotic resistance to pathogenic recipient strains was examined in isolates DVM 95.7 and NIFTEM 95.8 in different food matrices. The highest conjugation frequency with ~ 10(-1) was obtained in alfalfa seed sprouts. This study reports the presence of acquired gene resistance in Lactobacillus species and dissemination to susceptible strains of bacteria in different food matrices. 16S rRNA gene sequences of isolates were uploaded to the NCBI GenBank database to retrieve the accession number.202236209320
2295190.9967The drug resistance profile of Mycobacterium abscessus group strains from Korea. BACKGROUND: Bacteria of the Mycobacterium abscessus group are the second most common pathogens responsible for lung disease caused by nontuberculous mycobacteria in Korea. There is still a lack of studies investigating the genetic mechanisms involved in M. abscessus resistance to antibiotics other than clarithromycin. This study investigated the characteristics of drug resistance exhibited by M. abscessus clinical isolates from Korea. METHODS: We performed drug susceptibility testing for a total of 404 M. abscessus clinical strains. Subspecies were differentiated by molecular biological methods and examined for mutations in drug resistance-related genes. RESULTS: Of the 404 strains examined, 202 (50.00%), 199 (49.26%), and 3 (0.74%) strains were identified as M. abscessus, M. massiliense, and M. bolletii, respectively. Of the 152 clarithromycin-resistant strains, 6 possessed rrl mutations, while 4 of the 30 amikacin-resistant strains contained rrs mutations, and 5 of the 114 quinolone-resistant strains had gyr mutations. All mutant strains had high minimal inhibitory concentration values for the antibiotics. CONCLUSIONS: Our results showed the distribution of the strains with mutations in drug resistance-related genes was low in the M. abscessus group. Furthermore, we performed drug susceptibility testing and sequence analyses to determine the characteristics of these genes in the M. abscessus group.201424422193