# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6507 | 0 | 0.9924 | What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development. | 2025 | 40558133 |
| 6693 | 1 | 0.9921 | Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed. | 2024 | 38906487 |
| 2492 | 2 | 0.9920 | Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies. | 2022 | 35979498 |
| 6652 | 3 | 0.9920 | Strategic measures for the control of surging antimicrobial resistance in Hong Kong and mainland of China. Antimicrobial-resistant bacteria are either highly prevalent or increasing rapidly in Hong Kong and China. Treatment options for these bacteria are generally limited, less effective and more expensive. The emergence and dynamics of antimicrobial resistance genes in bacteria circulating between animals, the environment and humans are not entirely known. Nonetheless, selective pressure by antibiotics on the microbiomes of animal and human, and their associated environments (especially farms and healthcare institutions), sewage systems and soil are likely to confer survival advantages upon bacteria with antimicrobial-resistance genes, which may be further disseminated through plasmids or transposons with integrons. Therefore, antibiotic use must be tightly regulated to eliminate such selective pressure, including the illegalization of antibiotics as growth promoters in animal feed and regulation of antibiotic use in veterinary practice and human medicine. Heightened awareness of infection control measures to reduce the risk of acquiring resistant bacteria is essential, especially during antimicrobial use or institutionalization in healthcare facilities. The transmission cycle must be interrupted by proper hand hygiene, environmental cleaning, avoidance of undercooked or raw food and compliance with infection control measures by healthcare workers, visitors and patients, especially during treatment with antibiotics. In addition to these routine measures, proactive microbiological screening of hospitalized patients with risk factors for carrying resistant bacteria, including history of travel to endemic countries, transfer from other hospitals, and prolonged hospitalization; directly observed hand hygiene before oral intake of drugs, food and drinks; and targeted disinfection of high-touch or mutual-touch items, such as bed rails and bed curtains, are important. Transparency of surveillance data from each institute for public scrutiny provides an incentive for controlling antimicrobial resistance in healthcare settings at an administrative level. | 2015 | 26038766 |
| 6713 | 4 | 0.9920 | Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities. | 2022 | 35947446 |
| 1817 | 5 | 0.9920 | A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli. | 2024 | 38788585 |
| 6686 | 6 | 0.9919 | The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts. | 2025 | 40001375 |
| 9067 | 7 | 0.9919 | PIPdb: a comprehensive plasmid sequence resource for tracking the horizontal transfer of pathogenic factors and antimicrobial resistance genes. Plasmids, as independent genetic elements, carrying resistance or virulence genes and transfer them among different pathogens, posing a significant threat to human health. Under the 'One Health' approach, it is crucial to control the spread of plasmids carrying such genes. To achieve this, a comprehensive characterization of plasmids in pathogens is essential. Here we present the Plasmids in Pathogens Database (PIPdb), a pioneering resource that includes 792 964 plasmid segment clusters (PSCs) derived from 1 009 571 assembled genomes across 450 pathogenic species from 110 genera. To our knowledge, PIPdb is the first database specifically dedicated to plasmids in pathogenic bacteria, offering detailed multi-dimensional metadata such as collection date, geographical origin, ecosystem, host taxonomy, and habitat. PIPdb also provides extensive functional annotations, including plasmid type, insertion sequences, integron, oriT, relaxase, T4CP, virulence factors genes, heavy metal resistance genes and antibiotic resistance genes. The database features a user-friendly interface that facilitates studies on plasmids across diverse host taxa, habitats, and ecosystems, with a focus on those carrying antimicrobial resistance genes (ARGs). We have integrated online tools for plasmid identification and annotation from assembled genomes. Additionally, PIPdb includes a risk-scoring system for identifying potentially high-risk plasmids. The PIPdb web interface is accessible at https://nmdc.cn/pipdb. | 2025 | 39460620 |
| 6525 | 8 | 0.9919 | The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria. Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. | 2025 | 40867958 |
| 6508 | 9 | 0.9918 | Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies. | 2024 | 39611949 |
| 6506 | 10 | 0.9918 | Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks. | 2024 | 39944563 |
| 6656 | 11 | 0.9918 | Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health. | 2024 | 39113256 |
| 6533 | 12 | 0.9917 | The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. | 2025 | 40867959 |
| 6528 | 13 | 0.9916 | Antimicrobial resistance in urban river ecosystems. Antimicrobial resistance (AMR) with the ability to thwart clinical therapies and escalate mortality rates is emerging as one of the most pressing global health and environmental concerns. Urban rivers as an important subsystem of the environment offer galore of ecological services which benefit the city dwellers. However, with increased urbanization, industrialization, and heavy discharge of anthropogenic waste harboring antibiotics, heavy metals, pesticides, antibiotic resistance genes (ARGs), antibiotic resistant bacteria (ARB), urban rivers are becoming major reservoirs of ARGs and a hotspot for accelerated selection of ARB. These ARGs in urban rivers have the potential of being transferred to clinically important pathogens. In addition, urban rivers also act as important vectors for AMR spread. This is mainly due to the direct exposure of humans and animals to the heavily contaminated river water and high mobility of organisms (aquatic animals, pathogenic, non-pathogenic bacteria) as well as the genetic elements including ARGs and mobile genetic elements (MGEs) in the river. However, in spite of recent advocacy for comprehensive research programs aimed to investigate the occurrence, extent and major drivers of AMR in urban rivers globally, such studies are missing largely. This review encompasses the issues of AMR, major drivers and their vital roles in the evolution and spread of ARB with an emphasis on sources and hotspots of diverse ARGs in urban rivers contributing to co-occurrence of ARGs and MGEs. Further, the causal factors leading to adverse effects of antibiotic-load to river organisms with an elaboration on the current measures to eradicate the ARB, ARGs, and remove antibiotics from the urban river ecosystems are also discussed. A perspective review of current and emerging strategies with potentials of combating AMR in urban river ecosystems including advanced water treatment methodologies and floating islands or constructed wetlands. | 2022 | 35926259 |
| 6692 | 14 | 0.9916 | An omics-based framework for investigating the emerging antibiotic resistance gene: The case of estT. The escalating prevalence of antimicrobial resistance (AMR) constitutes a global public health crisis. This is exacerbated by the continuous emergence of new variants and the discovery of previously unrecognized antibiotic resistance genes (ARGs). While advanced AMR surveillance efforts include time-consuming epidemiological investigations and retrospective analyses, critical gaps often remain towards our understanding of the sources of newly identified ARGs. Here, we established a framework integrating omics-based epidemiological investigations, genomic feature analysis of ARGs-carrying bacteria and evolution analysis of novel ARGs. We took the novel resistance gene estT as an example and analyzed it following this framework. Our study revealed that the estT gene was widely prevalent, capable of cross-phyla transmission, and predominantly present in human- and animal-derived bacteria. We explored the genomic characteristics of estT-positive Escherichia coli, Bacillus spp., Mannheimia haemolytica, and Riemerella anatipestifer, uncovering their public health risks. Evolution analysis of estT homologs found historical connections between estTs and tet(X)s. This study provides a systematic strategy for the proactive surveillance of emerging ARGs, enabling omics-data-driven monitoring of ARG evolution and dissemination to mitigate the escalating crisis of AMR. | 2025 | 41160932 |
| 6696 | 15 | 0.9915 | The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. The role of wildlife with long-range dispersal such as gulls in the global dissemination of antimicrobial resistance (AMR) across natural and anthropogenic aquatic environments remains poorly understood. Antibiotic-resistant bacteria have been detected in resident and migratory gulls worldwide for more than a decade, suggesting gulls as either sentinels of AMR pollution from anthropogenic sources or independent reservoirs that could maintain and disperse AMR across aquatic environments. However, confirming either of these roles remains challenging and incomplete. In this review, we present current knowledge on the geographic regions where AMR has been detected in gulls, the molecular characterization of resistance genes, and the evidence supporting the capacity of gulls to disperse AMR across regions or countries. We identify several limitations of current research to assess the role of gulls in the spread of AMR including most studies not identifying the source of AMR, few studies comparing bacteria isolated in gulls with other wild or domestic species, and almost no study performing longitudinal sampling over a large period of time to assess the maintenance and dispersion of AMR by gulls within and across regions. We suggest future research required to confirm the role of gulls in the global dispersion of AMR including the standardization of sampling protocols, longitudinal sampling using advanced satellite tracking, and whole-genome sequencing typing. Finally, we discuss the public health implications of the spread of AMR by gulls and potential solutions to limit its spread in aquatic environments. | 2021 | 34367104 |
| 1871 | 16 | 0.9915 | Phylogeographical Landscape of Citrobacter portucalensis Carrying Clinically Relevant Resistomes. During a surveillance study conducted to assess the occurrence and genomic landscape of critical priority pathogens circulating at the human-animal-environment interface in Brazil, as part of the Grand Challenges Explorations-New Approaches to Characterize the Global Burden of Antimicrobial Resistance program, two multidrug-resistant (MDR) Citrobacter portucalensis carrying bla(CTX-M-15) extended-spectrum β-lactamase (ESBL) genes, isolated from green sea turtles, were characterized. Genomic and phylogeographical analysis of C. portucalensis genomes available in public databases revealed the intercontinental dissemination of clades carrying different arrays of clinically relevant genes conferring resistance to carbapenems, broad-spectrum cephalosporins, cephamycins, aminoglycosides and fluoroquinolones, disinfectants, and heavy metals. Our observations suggest that C. portucalensis could be emerging as critical priority bacteria of both public and One Health importance worldwide. IMPORTANCE The global spread of antibiotic-resistant priority pathogens beyond the hospital setting is a critical issue within a One Health context that integrates the human-animal-environment interfaces. On the other hand, next-generation sequencing technologies along with user-friendly and high-quality bioinformatics tools have improved the identification of bacterial species, and bacterial resistance surveillance. The novel Citrobacter portucalensis species was proposed in 2017 after taxonomic reclassification and definition of the strain A60(T) isolated in 2008. Here, we presented genomic data showing the occurrence of multidrug-resistant C. portucalensis isolates carrying bla(CTX-M-15) ESBL genes in South America. Additionally, we observed the intercontinental dissemination of clades harboring a broad resistome to clinically relevant antibiotics. Therefore, these findings highlight that C. portucalensis is a global MDR bacteria that carries intrinsic bla(CMY)- and qnrB-type genes and has become a critical priority pathogen due to the acquisition of clinically relevant resistance determinants, such as ESBL and carbapenemase-encoding genes. | 2022 | 35357225 |
| 3329 | 17 | 0.9915 | The transferable resistome of biosolids-plasmid sequencing reveals carriage of clinically relevant antibiotic resistance genes. Biosolids, widely used as organic fertilizers due to their high nutrient content, are significant reservoirs for antimicrobial-resistant bacteria (ARB) carrying transferable antimicrobial resistance genes (ARGs). This study investigated the transferability of ARG-containing plasmids of bacteria from biosolids originating from 12 German wastewater treatment plants (WWTPs) of varying sizes. Using exogenous plasmid captures with the recipient strain Escherichia coli CV601 gfp+, we collected 103 plasmids from 11 WWTPs. Characterization through DNA-based methods, including real-time PCR and Southern blot hybridization, revealed that the highest proportion of transconjugants harbored IncP (57%) and IncN (20%) plasmids. Complete sequencing of representative plasmids identified IncPβ, IncPε, IncQ2, IncN, and IncU plasmids carrying ARGs linked to mobile genetic elements (MGEs), including class 1 integrons, transposons, and IS elements (e.g., Tn402, IS26, and IS6100). These ARG-MGE complexes were integrated into specific plasmid regions, and similar plasmids were found across WWTPs and diverse geographic locations. The results underscore the role of WWTPs as hotspots for horizontal gene transfer, with biosolids serving as reservoirs for multi-resistant bacteria and resistance plasmids. This highlights the urgent need for improved biosolid management strategies to mitigate the release of ARGs and ARB into agricultural environments. IMPORTANCE: This study emphasizes the critical role of wastewater treatment plants (WWTPs) in facilitating the horizontal transfer of ARGs through biosolids. As biosolids are routinely applied to agricultural soils, their load of clinically relevant ARG content and transferability pose risks to animal and human health through plant-associated bacteria or surface water. By identifying conserved ARG-MGE associations across diverse plasmid types and WWTPs, this work highlights the global and persistent nature of resistance dissemination. These findings underscore the urgent need for sustainable management practices to limit the spread of antimicrobial-resistant bacteria (ARB) and associated ARGs in agricultural ecosystems. Ensuring safe biosolid use will contribute to combating antimicrobial resistance gene connectivity from environmental to human- or animal-associated bacteria globally. | 2025 | 41104936 |
| 6695 | 18 | 0.9915 | 'Disperse abroad in the land': the role of wildlife in the dissemination of antimicrobial resistance. Antimicrobial resistance (AMR) has been detected in the microbiota of many wildlife species, including long-distance migrants. Inadequately treated wastes from humans and livestock dosed with antimicrobial drugs are often assumed to be the main sources of AMR to wildlife. While wildlife populations closely associated with human populations are more likely to harbour clinically important AMR related to that found in local humans and livestock, AMR is still common in remote wildlife populations with little direct human influence. Most reports of AMR in wildlife are survey based and/or small scale, so researchers can only speculate on possible sources and sinks of AMR or the impact of wildlife AMR on clinical resistance. This lack of quantitative data on the flow of AMR genes and AMR bacteria across the natural environment could reflect the numerous AMR sources and amplifiers in the populated world. Ecosystems with relatively simple and well-characterized potential inputs of AMR can provide tractable, but realistic, systems for studying AMR in the natural environment. New tools, such as animal tracking technologies and high-throughput sequencing of resistance genes and mobilomes, should be integrated with existing methodologies to understand how wildlife maintains and disperses AMR. | 2016 | 27531155 |
| 6668 | 19 | 0.9915 | Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Antimicrobial resistance (AMR) is a significant threat to both human and animal health. The spread of AMR bacteria and genes across systems can occur through a myriad of pathways, both related and unrelated to agriculture, including via wastewater, soils, manure applications, direct exchange between humans and animals, and food exposure. Tracing origins and drivers of AMR bacteria and genes is challenging due to the array of contexts and the complexity of interactions overlapping health practice, microbiology, genetics, applied science and engineering, as well as social and human factors. Critically assessing the diverse and sometimes contradictory AMR literature is a valuable step in identifying tractable mitigation options to stem AMR spread. In this article we review research on the nonfoodborne spread of AMR, with a focus on domesticated animals and the environment and possible exposures to humans. Attention is especially placed on delineating possible sources and causes of AMR bacterial phenotypes, including underpinning the genetics important to human and animal health. | 2019 | 30924539 |