INSTITUTION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
816000.9653Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.202437497706
489610.9647The changing ecology of bacterial infections in children. There is continued change in the organisms involved in commonly encountered infections. Although the major organisms have changed less in pediatric than in medical or surgical infections, the advances in neonatology and the chemotherapy of leukemia have resulted in cases in which infection with once uncommon organisms is now commonplace. Perhaps more disheartening has been the increasing resistance of bacteria to antibiotics. Since resistance patterns are so much a reflection of antibiotic usage patterns in an institution, each pediatrician must be aware of the species of bacteria and the resistance patterns of the bacteria isolated in his hospital, particularly in neonatal, intensive care, and burn areas where there is the highest use of antibiotics. Close interaction of pediatrician, diagnostic microbiology laboratory, and hospital epidemiologist can provide early clues to possible bacteria involved in infection, as well as suspected antibiotic resistance patterns.19761253540
818520.9642RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent.202234505182
249630.9640Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.202032971809
818340.9638Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
978950.9637Nosocomial antibiotic resistance in multiple gram-negative species: experience at one hospital with squeezing the resistance balloon at multiple sites. Increased use of antibiotics has led to the isolation of multidrug-resistant bacteria, especially in intensive care units and long-term care facilities. Resistance in specific gram-negative bacteria, including Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, is of great concern, because a growing number of reports have documented mechanisms whereby these microorganisms have become resistant to all available antibacterial agents used in therapy. Reduction in the selection of these multidrug-resistant bacteria can be accomplished by a combination of several strategies. These include having an understanding of the genetics of both innate and acquired characteristics of bacteria; knowing resistance potentials for specific antibacterials; monitoring resistance trends in bacteria designated as problematic organisms within a particular institution on a routine basis; modifying antibiotic formularies when and where needed; creating institutional education programs; and enforcing strict infection-control practices. Strategies appropriate for primary prevention of nosocomial resistance may differ from those required for control of existing epidemic or endemic resistance.200211797177
816460.9635Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance.202032026301
917470.9635Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings.202337268007
978580.9635Mis-annotations of a promising antibiotic target in high-priority gram-negative pathogens. The rise of antibiotic resistance combined with the lack of new products entering the market has led to bacterial infections becoming one of the biggest threats to global health. Therefore, there is an urgent need to identify novel antibiotic targets, such as dihydrodipicolinate synthase (DHDPS), an enzyme involved in the production of essential metabolites in cell wall and protein synthesis. Here, we utilised a 7-residue sequence motif to identify mis-annotation of multiple DHDPS genes in the high-priority Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. We subsequently confirmed these mis-annotations using a combination of enzyme kinetics and X-ray crystallography. Thus, this study highlights the need to ensure genes encoding promising drug targets, like DHDPS, are annotated correctly, especially for clinically important pathogens. PDB ID: 6UE0.202031943170
506890.9634Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria.202033086716
2510100.9634Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.202134943524
9561110.9632The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Modern medicine is built on antibiotics. Antibiotics are something that we take for granted. We have however spent over 60 years educating bacteria to become resistant, and the global resistance tsunami has caught everyone unawares. Since bacteria have changed, we also have to change, and to change most of the practices of how we use antibiotics. Because the development of new antibiotics is so expensive, a stewardship approach may help to preserve those that we have now while we work to develop new antibiotics and to develop other approaches to controlling and treating infections. We need to adopt the ethic of Good Stewardship Practice (GSP) as an active and dynamic process of continuous improvement in antibiotic use, a process with many steps of different sizes involving everyone involved in antibiotic use. All antibiotic users have an important role to play in GSP. Although the resistance situation is pessimistic, and the future of antibiotics looks uncertain, we are fortunately entering what may be seen as the golden age of microbiology. This encompasses an astonishing array of technologies for rapid pathogen and resistance gene detection, for clone identification by genome sequencing, for identification of novel bacterial genes and for identification of the Achilles' heels of different pathogens. Future antibiotics may have to be far more targeted to the individual pathogen and the site of infection. A global tax on antibiotics might reduce their use while funding the cost of developing new antibiotics and new approaches to control of infectious diseases.201424646601
9158120.9631Quorum sensing pathways in Gram-positive and -negative bacteria: potential of their interruption in abating drug resistance. Quorum sensing (QS) is an inter-cell communication between bacterial populations through release of tiny diffusible compounds as signalling agents, called auto-inducers, abetting bacteria to track population density. QS allows bacterial population to perform collectively in coordination to wide phenotypes like alterations in expression of virulence genes to achieve advancement over their competitors, drug resistance and biofilm formation. Several classes of autoinducers have been described that are involved in bacterial virulence. This review gives an insight into the multitudinous QS systems in Gram-positive and Gram-negative bacteria to explore their role in microbial physiology and pathogenesis. Bacterial resistance to antibiotics has clinically become a super challenge. Strategies to interrupt QS pathways by natural and synthetic QS inhibitors or quorum quenchers or analogs provide a potential treatment. We highlight the advancements in discovery of promising new targets for development of next generation antimicrobials to control infections caused by multidrug resistant bacterial pathogens.201931007147
9810130.9631Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill.202339816646
9178140.9631Targeting non-multiplying organisms as a way to develop novel antimicrobials. Increasing resistance and decreasing numbers of antibiotics reaching the market point to a growing need for novel antibacterial drugs. Most antibiotics are very inefficient at killing non-multiplying bacteria, which live side by side with multiplying ones of the same strain in a clinical infection. Although non-multiplying bacteria do not usually cause disease, they can revert to the multiplying state that leads to overt disease, at which time resistance can emerge. Here we discuss the concept of developing antibacterial drugs by targeting non-multiplying organisms. We define non-multiplying bacteria, discuss the efficacy of existing antibiotics, and assess whether targeting these bacteria might lead to new antibiotics that will decrease the rate of emergence of resistance. Lastly, we review the potential of new molecular targets and live non-multiplying bacteria as possible routes for the development of novel antimicrobial drugs.200818262665
9799150.9630Microbiology and drug resistance mechanisms of fully resistant pathogens. The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles.200415451497
9183160.9629Overcoming Bacteriophage Resistance in Phage Therapy. Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy.202437966611
9811170.9629"Infectious Supercarelessness" in Discussing Antibiotic-Resistant Bacteria. Many bacterial pathogens are exhibiting resistance to increasing numbers of antibiotics making it much more challenging to treat the infections caused by these microbes. In many reports in the media and perhaps even in discussions among physicians and biomedical scientists, these bacteria are frequently referred to as "bugs" with the prefix "super" appended. This terminology has a high potential to elicit unjustified inferences and fails to highlight the broader evolutionary context. Understanding the full range of biological and evolutionary factors that influence the spread and outcomes of infections is critical to formulating effective individual therapies and public health interventions. Therefore, more accurate terminology should be used to refer these multidrug-resistant bacteria.201628174759
8155180.9629Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy.202134618567
9812190.9629Drug Resistance Mechanisms in Bacteria Causing Sexually Transmitted Diseases and Associated with Vaginosis. Here, we review sexually transmitted diseases (STDs) caused by pathogenic bacteria and vaginal infections which result from an overgrowth of opportunistic bacterial microflora. First, we describe the STDs, the corresponding pathogens and the antimicrobials used for their treatment. In addition to the well-known diseases caused by single pathogens (i.e., syphilis, gonococcal infections, and chlamydiosis), we consider polymicrobial reproductive tract infections (especially those that are difficult to effectively clinically manage). Then, we summarize the biochemical mechanisms that lead to antimicrobial resistance and the most recent data on the emergence of drug resistance in STD pathogens and bacteria associated with vaginosis. A large amount of research performed in the last 10-15 years has shed light on the enormous diversity of mechanisms of resistance developed by bacteria. A detailed understanding of the mechanisms of antimicrobials action and the emergence of resistance is necessary to modify existing drugs and to develop new ones directed against new targets.201627242760