# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6131 | 0 | 0.8579 | Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance. | 2017 | 28705984 |
| 811 | 1 | 0.8576 | Genomic analysis of five antibiotic-resistant bacteria isolated from the environment. Our study presents the whole-genome sequences and annotation of five bacteria isolates, each demonstrating distinct antibiotic resistance. These isolates include Bacillus paranthracis RIT 841, Atlantibacter hermanii RIT 842, Pantoea leporis RIT 844, Enterococcus casseliflavus RIT 845, and Pseudomonas alkylphenolica RIT 846, underscoring the importance of understanding antimicrobial resistance. | 2024 | 39189722 |
| 5632 | 2 | 0.8547 | Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments. | 2023 | 37998773 |
| 822 | 3 | 0.8531 | Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains. | 2013 | 23148020 |
| 823 | 4 | 0.8531 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 5381 | 5 | 0.8528 | Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG). | 2024 | 38078696 |
| 5129 | 6 | 0.8521 | Complete genome sequences of Vibrio parahaemolyticus strains L2171 and L2181 associated with AHPND in Penaeus vannamei postlarvae by hybrid sequencing. Vibrio parahaemolyticus strains L2171 and L2181 were isolated from a Penaeus vannamei shrimp hatchery. Both strains carry the pVA plasmid harboring the PirAB genes encoding the binary PirAB toxins that cause the acute hepatopancreatic necrosis disease (AHPND) in cultured shrimp. The strains also harbor multidrug resistance (MDR) and a repertoire of virulence factor genes. Our goal was to determine their complete genome sequences and perform a comprehensive analysis of their genetic characteristics. Therefore, the genomes of two strains, which are highly virulent to shrimp were sequenced by Illumina and the PacBio platforms. These data contribute to a better understanding of V. parahaemolyticus and its role as a pathogen in commercially important species such as farmed shrimp, providing valuable insights for disease management in aquaculture. | 2025 | 40677256 |
| 5222 | 7 | 0.8517 | Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene. | 2009 | 19414240 |
| 5205 | 8 | 0.8514 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |
| 5204 | 9 | 0.8507 | Draft genome sequencing of a multidrug-resistant Klebsiella pneumoniae strain MBBL2 isolated from mastitic cow milk. Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including Klebsiella pneumoniae. We present the genome sequence of K. pneumoniae strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans. | 2025 | 39878535 |
| 5384 | 10 | 0.8506 | Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. The virulence of bacteria can be evaluated through both phenotypic and molecular assays. We applied these techniques to 114 strains of Salmonella enterica subsp. enterica collected from July 2010 to June 2012. Salmonella strains were of human origin (71/114) or isolated from food (43/114). The strain set included only the three predominant Salmonella serovars isolated in Italy from humans (S. Enteritidis, S. Typhimurium, S. 4,[5],12:i:-). These strains were screened via polymerase chain reaction for 12 virulence factors (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE, spvC, pefA, mig5, rck, srgA), while antimicrobial sensitivity was evaluated through the Kirby-Bauer assay. Fifty-nine different virulence profiles were highlighted; the genes showing the highest homology were those related to the presence of prophages (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE), while the genes related to the presence of plasmids were less frequently detected (spvC, pefA, mig5, rck, srgA). The Salmonella serovars Typhimurium and 4,[5],12:i:- were closely related in terms of both virulotyping and antibiotic resistance. S. Enteritidis showed higher antibiotic sensitivity and a higher prevalence of genes related to plasmids. | 2013 | 24102078 |
| 1385 | 11 | 0.8506 | GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission. | 2022 | 35255126 |
| 2464 | 12 | 0.8502 | Characterization of antimicrobial resistant Empedobacter from fresh meat and meat preparations. Empedobacter has been identified as an opportunistic pathogen that frequently exhibits resistance to multiple antibiotics, including some of those known as of last-resort. This study describes the phenotypic and genotypic characterization of carbapenem-resistant Empedobacter isolates obtained from retail fresh meat and meat preparations. The antimicrobial susceptibility of 62 isolates to 15 common antibiotics was assessed using the broth microdilution method. Additionally, whole genome sequencing (WGS) was performed on 24 of these isolates to determine their taxonomic classification and to identify antimicrobial resistance genes (ARGs), as well as their chromosomal or plasmid-borne location. Resistance to meropenem, ciprofloxacin, amikacin, gentamicin, chloramphenicol, tetracycline, and/or colistin was frequently detected, with 61.3 % of the Empedobacter strains being classified as multi-drug resistant (MDR) despite the absence of breakpoints for some of the antibiotics tested. WGS revealed the presence of bla (EBR-1) genes in all Empedobacter falsenii isolates and the single Empedobacter tilapiae isolate, of a chromosomic ere(D) gene in one E. falsenii isolate, and of tet(X2) genes in eight E. falsenii isolates, seven of them harboured in plasmids. These findings underscore the need for further research to determine the role of neglected non-ESKAPE bacteria, such as Empedobacter, in the spread of antimicrobial resistance in meat production systems. | 2025 | 41080801 |
| 5203 | 13 | 0.8501 | Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. OBJECTIVES: The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS: Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS: WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION: The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin. | 2021 | 33516893 |
| 1718 | 14 | 0.8501 | Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. OBJECTIVES: Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pathogenic and capable of causing disease in a broader context. METHODS: Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and two separate animal models. RESULTS: Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were associated with increased virulence in animals. CONCLUSIONS: Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, highlighting the need to prevent disseminated spread. | 2024 | 39396555 |
| 1639 | 15 | 0.8500 | Multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae carrying bla(NDM)-bla(CTX-M15) isolated from flies in Rio de Janeiro, Brazil. OBJECTIVES: Flies have been implicated in the dispersal of medically important bacteria including members of the genus Klebsiella between different environmental compartments. The aim of this study was to retrieve and characterize antibiotic-resistant bacteria from flies collected near to hospitals. METHODS: Flies were collected in the vicinity of medical facilities and examined for bacteria demonstrating phenotypic resistance to ceftriaxone, followed by determination of phenotypic and genotypic resistance profiles. In addition, whole genome sequencing followed by phylogenetic analysis and resistance genotyping were performed with the multidrug-resistant (MDR) strain Lemef23, identified as Klebsiella quasipneumoniae subsp. similipneumoniae. RESULTS: The strain Lemef23, classified by multiple locus sequence typing as novel ST 3397, harboured numerous resistance genes. The bla(NDM) was located on a Tn3000 element, a common genetic platform for the carriage of this gene in Brazil. Inference of phylogenetic orthology of strain Lemef23 and other clinical isolates suggested an anthropogenic origin. CONCLUSIONS: The findings of this study support the role of flies as vectors of MDR bacteria of clinical importance and provide the first record of bla(NDM-1) and bla(CTXM-15) in a Brazilian isolate of K. quasipneumoniae subsp. similipneumoniae, demonstrating the value of surveying insects as reservoirs of antibiotic resistance. | 2021 | 33302000 |
| 5195 | 16 | 0.8498 | Genomic characteristics of antimicrobial resistance and virulence factors of carbapenem-resistant Stutzerimonas nitrititolerans isolated from the clinical specimen. BACKGROUND: Stutzerimonas nitrititolerans (S. nitrititolerans) is a rare human pathogenic bacterium and has been inadequately explored at the genomic level. Here, we report the first case of carbapenem-resistant S. nitrititolerans isolated from the peritoneal dialysis fluid of a patient with chronic renal failure. This study analyzed the genomic features, antimicrobial resistance, and virulence factors of the isolated strain through whole genome sequencing (WGS). METHODS: The bacterial isolate from the peritoneal dialysis fluid was named PDI170223, and preliminary identification was conducted through Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS). WGS of the strain PDI170223 was performed using the Illumina platform, and a phylogenetic tree was constructed based on the 16S rRNA gene sequences. Antimicrobial susceptibility test (AST) was conducted using the TDR-200B2 automatic bacteria identification/drug sensitivity tester. RESULTS: S. nitrititolerans may emerge as a human pathogen due to its numerous virulence genes, including those encoding toxins, and those involved in flagellum and biofilm formation. The AST results revealed that the strain is multidrug- and carbapenem-resistant. The antimicrobial resistance genes of S. nitrititolerans are complex and diverse, including efflux pump genes and β⁃lactam resistance genes. CONCLUSION: The analysis of virulence factors and antimicrobial resistance of S. nitrititolerans provides clinical insight into the pathogenicity and potential risks of this bacterium. It is crucial to explore the mechanisms through which S. nitrititolerans causes diseases and maintains its antimicrobial resistance, thereby contributing to development of effective treatment and prevention strategies. | 2024 | 39358682 |
| 1383 | 17 | 0.8497 | Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment. | 2020 | 31526277 |
| 2463 | 18 | 0.8496 | Characterization of Antibiotic-Resistant Stenotrophomonas Isolates from Painted Turtles Living in the Wild. Stenotrophomonas maltophilia is a ubiquitous multidrug-resistant opportunistic pathogen commonly associated with nosocomial infections. The purpose of this study was to isolate and characterize extended-spectrum beta-lactamase (ESBL) producing bacteria from painted turtles (Chrysemys picta) living in the wild and captured in southeastern Wisconsin. Fecal samples from ten turtles were examined for ESBL producing bacteria after incubation on HardyCHROM™ ESBL agar. Two isolates were cultivated and identified by 16S rRNA gene sequencing and whole genome sequencing (WGS) as Stenotrophomonas sp. 9A and S. maltophilia 15A. They were multidrug-resistant, as determined by antibiotic susceptibility testing. Stenotrophomonas sp. 9A was found to produce an extended spectrum beta-lactamase (ESBL) and both isolates were found to be carbapenem-resistant. EDTA-modified carbapenem inactivation method (eCIM) and the modified carbapenem inactivation method (mCIM) tests were used to examine the carbapenemase production and the test results were negative. Through WGS several antimicrobial resistance genes were identified in S. maltophilia 15A. For example a chromosomal L1 β-lactamase gene, which is known to hydrolyze carbapenems, a L2 β-lactamase gene, genes for the efflux systems smeABC and smeDEF and the aminoglycosides resistance genes aac(6')-lz and aph(3')-llc were found. An L2 β-lactamase gene in Stenotrophomonas sp. 9A was identified through WGS. | 2023 | 36729340 |
| 1067 | 19 | 0.8496 | Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk. | 2015 | 26042965 |