INHERITED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
34800.9929Conjugative DNA transfer in Streptomyces by TraB: is one protein enough? Antibiotic-producing soil bacteria of the genus Streptomyces form a huge natural reservoir of antibiotic resistance genes for the dissemination within the soil community. Streptomyces plasmids encode a unique conjugative DNA transfer system clearly distinguished from classical conjugation involving a single-stranded DNA molecule and a type IV protein secretion system. Only a single plasmid-encoded protein, TraB, is sufficient to translocate a double-stranded DNA molecule into the recipient in Streptomyces matings. TraB is a hexameric pore-forming ATPase that resembles the chromosome segregator protein FtsK and translocates DNA by recognizing specific 8-bp repeats present in the plasmid clt locus. Mobilization of chromosomal genes does not require integration of the plasmid, because TraB also recognizes clt-like sequences distributed all over the chromosome.201223082971
34410.9929Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are homologues to a family of ATP-binding proteins. The specific interaction between rhizobia and their hosts requires many genes that influence both early and late steps in symbiosis. Three new genes, designated prsD, prsE (protein secretion) and orf3, were identified adjacent to the exo133 mutation in a cosmid carrying the genomic DNA of Rhizobium leguminosarum bv. trifolii TA1. The prsDE genes share significant homology to the genes encoding ABC transporter proteins PrtDE from Erwinia chrysanthemi and AprDE from Pseudomonas aeruginosa which export the proteases in these bacteria. PrsD shows at least five potential transmembrane hydrophobic regions and a large hydrophilic domain containing an ATP/GTP binding cassette. PrsE has only one potential transmembrane hydrophobic domain in the N-terminal part and is proposed to function as an accessory factor in the transport system. ORF3, like PrtF and AprF, has a typical N-terminal signal sequence but has no homology to these proteins. The insertion of a kanamycin resistance cassette into the prsD gene of the R. leguminosarum bv. trifolii TA1 wild-type strain created a mutant which produced a normal amount of exopolysaccharide but was not effective in the nodulation of clover plants.19979141701
35120.9929Rapid and efficient cloning of proviral flanking fragments by kanamycin resistance gene complementation. We have developed a technique for the rapid cloning of unknown flanking regions of transgenic DNA. We complemented a truncated kanamycin resistance gene of a bacterial plasmid with a neomycin resistance gene fragment from a gene transfer vector. Optimized transformation conditions allowed us to directly select for kanamycin-resistant bacteria. We cloned numerous proviral flanking fragments from growth factor-independent cell mutants that were obtained after infection with a replication incompetent retroviral vector and identified integrations into the cyclin D2 and several unknown genomic sequences. We anticipate that our method could be adapted to various vector systems that are used to tag and identify genes and to map genomes.19999863001
53630.9928Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.19902117883
6840.9928Designer TALEs enable discovery of cell death-inducer genes. Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.202438723194
823650.9928Recurrent acquisition of nuclease-protease pairs in antiviral immunity. Antiviral immune systems diversify by integrating new genes into existing pathways, creating new mechanisms of viral resistance. We identified genes encoding a predicted nuclease paired with a trypsin-like protease repeatedly acquired by multiple, otherwise unrelated antiviral immune systems in bacteria. Cell-based and biochemical assays revealed the nuclease is a proenzyme that cleaves DNA only after activation by its partner protease. Phylogenetic analysis showed that two distinct immune systems, Hachiman and AVAST, use the same mechanism of proteolytic activation despite their independent evolutionary origins. Examination of nuclease-protease inheritance patterns identified caspase-nuclease (canu) genomic loci that confer antiviral defense in a pathway reminiscent of eukaryotic caspase activation. These results uncover the coordinated activities of pronucleases and their activating proteases within different immune systems and show how coevolution enables defense system innovation.202540766668
35760.9927New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. In this report we describe two distinct approaches to develop new antibiotic resistance cassettes that allow for efficient selection of Borrelia burgdorferi transformants. The first approach utilizes fusions of borrelial flagellar promoters to antibiotic resistance markers from other bacteria. The AACC1 gene, which encodes a gentamicin acetyltransferase, conferred a high level of gentamicin resistance in B. Burfdorferi when expressed from these promoters. No cross-resistance occurred between this cassette and the kanamycin resistance cassette, which was previously developed in an analogous fashion. A second and different approach was taken to develop an efficient selectable marker that confers resistance to the antibiotic coumermycin A1. A synthetic gene was designed from the GYRB301 allele of the coumermycin-resistant B. Burgdorferi strain B31-NGR by altering the coding sequence at the wobble position. The resulting gene, GYRB(SYN), encodes a protein identical to the product of GYRB301, but the genes share only 66% nucleotide identity. The nucleotide sequence of GYRB(SYN)is sufficiently divergent from the endogenous B. Burgdorferi GYRB gene to prevent recombination between them. The cassettes described in this paper improve our repertoire of genetic tools in B. Burgdorferi. These studies also provide insight into parameters governing recombination and gene expression in B. Burgdorferi.200314593251
28970.9927A genetic system that reports transient activation of genes in Bacillus. Site-specific recombination is a powerful tool for precise excision of DNA fragments. We used this characteristic to construct a genetic system to report the transient activation of a promoter by promoting the stable acquisition of an antibiotic resistance marker by the bacterium. The system is composed of two compatible plasmid derivatives from Gram-positive bacteria. One of the plasmids allows the insertion of promoters upstream from tnpI, which encodes the site-specific recombinase of Tn4430. The second plasmid carries two selectable resistance genes: one is flanked by two site-specific recombination sequences and is lost following recombination; in contrast, the other resistance gene becomes functional after the site-specific recombination event. By inserting conditionally controlled promoters (the xylose-inducible xylA promoter or the plcA promoter whose expression is dependent on the growth medium) upstream of tnpI, we demonstrated that our genetic system responds to signals inducing transcription by conferring a new resistance phenotype to the host bacteria. Thus, this system can be used to identify genes which are transiently or conditionally expressed.19979427554
57580.9927Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
35690.9927Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes.200010781091
8139100.9926TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting.201323707478
397110.9926PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate.200312563033
65120.9926Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. A genetic approach was used to assess the extent to which a particular plant defense response, phytoalexin biosynthesis, contributes to Arabidopsis thaliana resistance to Pseudomonas syringae pathogens. The A. thaliana phytoalexin, camalexin, accumulated in response to infection by various P. syringae strains. No correlation between pathogen avirulence and camalexin accumulation was observed. A biochemical screen was used to isolate three mutants of A. thaliana ecotype Columbia that were phytoalexin deficient (pad mutants). The mutations pad1, pad2, and pad3 were found to be recessive alleles of three different genes. pad1 and pad2 were mapped to chromosome IV and pad3 was mapped to chromosome III. Infection of pad mutant plants with strains carrying cloned avirulence genes revealed that the pad mutations did not affect the plants' ability to restrict the growth of these strains. This result strongly suggests that in A. thaliana, phytoalexin biosynthesis is not required for resistance to avirulent P. syringae pathogens. Two of the pad mutants displayed enhanced sensitivity to isogenic virulent P. syringae pathogens, suggesting that camalexin may serve to limit the growth of virulent bacteria.19948090752
585130.9925Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Nramp1 is one of the few host resistance genes that have been characterized at the molecular level. Nramp1 is an integral membrane protein expressed in the lysosomal compartment of macrophages and is recruited to the membrane of bacterial phagosomes where it affects intracellular microbial replication. Nramp1 is part of a very large gene family conserved from bacteria and man that codes for transporters of divalent cations transporters. We propose that Nramp1 affects the intraphagosomal microbial replication by modulating divalent cations content in this organelle. Both mammalian and bacterial transporters may compete for the same substrate in the phagosomal space.200010679418
69140.9925Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Plant pathogenic bacteria of the genus Xanthomonas possess transcription activator-like effectors (TALEs) that activate transcription of disease susceptibility genes in the host, inducing a state of disease. Here we report that some isolates of the rice pathogen Xanthomonas oryzae use truncated versions of TALEs (which we term interfering TALEs, or iTALEs) to overcome disease resistance. In comparison with typical TALEs, iTALEs lack a transcription activation domain but retain nuclear localization motifs and are expressed from genes that were previously considered pseudogenes. We show that the rice gene Xa1, encoding a nucleotide-binding leucine-rich repeat protein, confers resistance against X. oryzae isolates by recognizing multiple TALEs. However, the iTALEs present in many isolates interfere with the otherwise broad-spectrum resistance conferred by Xa1. Our findings illustrate how bacterial effectors that trigger disease resistance in the host can evolve to interfere with the resistance process and, thus, promote disease.201627811915
349150.9925Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor.19902172217
8140160.9925Engineering plant disease resistance based on TAL effectors. Transcription activator-like (TAL) effectors are encoded by plant-pathogenic bacteria and induce expression of plant host genes. TAL effectors bind DNA on the basis of a unique code that specifies binding of amino acid residues in repeat units to particular DNA bases in a one-to-one correspondence. This code can be used to predict binding sites of natural TAL effectors and to design novel synthetic DNA-binding domains for targeted genome manipulation. Natural mechanisms of resistance in plants against TAL effector-containing pathogens have given insights into new strategies for disease control.201323725472
335170.9924Construction and characterization of a replication-competent retroviral shuttle vector plasmid. We constructed two versions of an RCASBP-based retroviral shuttle vector, RSVP (RCASBP shuttle vector plasmid), containing either the zeocin or blasticidin resistance gene. In this vector, the drug resistance gene is expressed in avian cells from the long terminal repeat (LTR) promoter, whereas in bacteria the resistance gene is expressed from a bacterial promoter. The vector contains a bacterial origin of replication (ColE1) to allow circular viral DNA to replicate as a plasmid in bacteria. The vector also contains the lac operator sequence, which binds to the lac repressor protein, providing a simple and rapid way to purify the vector DNA. The RSVP plasmid contains the following sequence starting with the 5" end: LTR, gag, pol, env, drug resistance gene, lac operator, ColE1, LTR. After this plasmid was transfected into DF-1 cells, we were able to rescue the circularized unintegrated viral DNA from RSVP simply by transforming the Hirt DNA into Escherichia coli. Furthermore, we were able to rescue the integrated provirus. DNA from infected cells was digested with an appropriate restriction enzyme (ClaI) and the vector-containing segments were enriched using lac repressor protein and then self-ligated. These enriched fractions were used to transform E. coli. The transformation was successful and we did recover integration sites, but higher-efficiency rescue was obtained with electroporation. The vector is relatively stable upon passage in avian cells. Southern blot analyses of genomic DNAs derived from successive viral passages under nonselective conditions showed that the cassette (drug resistance gene-lac operator-ColE1) insert was present in the vector up to the third viral passage for both resistance genes, which suggests that the RSVP vectors are stable for approximately three viral passages. Together, these results showed that RSVP vectors are useful tools for cloning unintegrated or integrated viral DNAs.200211799171
286180.9924Plasmid rescue - a tool for reproducible recovery of genes from transfected mammalian cells? The efficient rescue of plasmids containing the thymidine kinase gene (tk) of Herpes simplex virus type I from genetically transformed mouse cells by transformation of bacteria is described. Rescued plasmids contain insertions of calf DNA used as a carrier in the transfection but usually lack portions of plasmid DNA. Deletions generally concern the region spanning from around the PvuII site of pBR322 to within the tetracycline resistance coding sequence, whereas the extent of tk sequence deletion varies, depending on the site of its integration (BamHI or PvuII) into the plasmid. Modelling the rescue process by transformation of bacteria with a mixture of original plasmids and sheared mouse cell DNA clearly demonstrates that deletions are caused by the presence of the mammalian DNA and they probably occur during re-transformation of bacteria before the onset of tetracycline gene expression. Plasmids lacking the Tcr region are reproducibly rescuable without deletion. Methods for reproducible re-isolation of transferred genes from mammalian cells are discussed.19846323922
9985190.9923Identification of the First Gene Transfer Agent (GTA) Small Terminase in Rhodobacter capsulatus and Its Role in GTA Production and Packaging of DNA. Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.201931534034