INHABITANTS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
823800.9914Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Antibiotic self-resistance mechanisms, which include drug elimination, drug modification, target modification, and drug sequestration, contribute substantially to the growing problem of antibiotic resistance among pathogenic bacteria. Enediynes are among the most potent naturally occurring antibiotics, yet the mechanism of resistance to these toxins has remained a mystery. We characterize an enediyne self-resistance protein that reveals a self-sacrificing paradigm for resistance to highly reactive antibiotics, and thus another opportunity for nonpathogenic or pathogenic bacteria to evade extremely potent small molecules.200312970566
831410.9913Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Bile salts and bacteria have intricate relationships. The composition of the intestinal pool of bile salts is shaped by bacterial metabolism. In turn, bile salts play a role in intestinal homeostasis by controlling the size and the composition of the intestinal microbiota. As a consequence, alteration of the microbiome-bile salt homeostasis can play a role in hepatic and gastrointestinal pathological conditions. Intestinal bacteria use bile salts as environmental signals and in certain cases as nutrients and electron acceptors. However, bile salts are antibacterial compounds that disrupt bacterial membranes, denature proteins, chelate iron and calcium, cause oxidative damage to DNA, and control the expression of eukaryotic genes involved in host defense and immunity. Bacterial species adapted to the mammalian gut are able to endure the antibacterial activities of bile salts by multiple physiological adjustments that include remodeling of the cell envelope and activation of efflux systems and stress responses. Resistance to bile salts permits that certain bile-resistant pathogens can colonize the hepatobiliary tract, and an outstanding example is the chronic infection of the gall bladder by Salmonella enterica. A better understanding of the interactions between bacteria and bile salts may inspire novel therapeutic strategies for gastrointestinal and hepatobiliary diseases that involve microbiome alteration, as well as novel schemes against bacterial infections.201729043249
75020.9912Mutations in Genes with a Role in Cell Envelope Biosynthesis Render Gram-Negative Bacteria Highly Susceptible to the Anti-Infective Small Molecule D66. Anti-infectives include molecules that target microbes in the context of infection but lack antimicrobial activity under conventional growth conditions. We previously described D66, a small molecule that kills the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) within cultured macrophages and murine tissues, with low host toxicity. While D66 fails to inhibit bacterial growth in standard media, the compound is bacteriostatic and disrupts the cell membrane voltage gradient without lysis under growth conditions that permeabilize the outer membrane or reduce efflux pump activity. To gain insights into specific bacterial targets of D66, we pursued two genetic approaches. Selection for resistance to D66 revealed spontaneous point mutations that mapped within the gmhB gene, which encodes a protein involved in the biosynthesis of the lipopolysaccharide core molecule. E. coli and S. Typhimurium gmhB mutants exhibited increased resistance to antibiotics, indicating a more robust barrier to entry. Conversely, S. Typhimurium transposon insertions in genes involved in outer membrane permeability or efflux pump activity reduced fitness in the presence of D66. Together, these observations underscore the significance of the bacterial cell envelope in safeguarding Gram-negative bacteria from small molecules.202540732029
23630.9912Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.201222995042
74740.9911S51 Family Peptidases Provide Resistance to Peptidyl-Nucleotide Antibiotic McC. Microcin C (McC)-like compounds are natural Trojan horse peptide-nucleotide antibiotics produced by diverse bacteria. The ribosomally synthesized peptide parts of these antibiotics are responsible for their facilitated transport into susceptible cells. Once inside the cell, the peptide part is degraded, releasing the toxic payload, an isoaspartyl-nucleotide that inhibits aspartyl-tRNA synthetase, an enzyme essential for protein synthesis. Bacteria that produce microcin C-like compounds have evolved multiple ways to avoid self-intoxication. Here, we describe a new strategy through the action of S51 family peptidases, which we name MccG. MccG cleaves the toxic isoaspartyl-nucleotide, rendering it inactive. While some MccG homologs are encoded by gene clusters responsible for biosynthesis of McC-like compounds, most are encoded by standalone genes whose products may provide a basal level of resistance to peptide-nucleotide antibiotics in phylogenetically distant bacteria. IMPORTANCE Here, we identified a natural substrate for a major phylogenetic clade of poorly characterized S51 family proteases from bacteria. We show that these proteins can contribute to a basal level of resistance to an important class of natural antibiotics.202235467414
72350.9911Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1Pl and ail2Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2Pl and pagCPl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed.201425333642
61660.9911Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048
832670.9911The force awakens: The dark side of mechanosensing in bacterial pathogens. For many bacteria, the ability to sense physical stimuli such as contact with a surface or a potential host cell is vital for survival and proliferation. This ability, and subsequent attachment, confers a wide range of benefits to bacteria and many species have evolved to take advantage of this. Despite the impressive diversity of bacterial pathogens and their virulence factors, mechanosensory mechanisms are often conserved. These include sensing impedance of flagellar rotation and resistance to type IV pili retraction. There are additional mechanisms that rely on the use of specific membrane-bound adhesins to sense either surface proximity or shear forces. This review aims to examine these mechanosensors, and how they are used by pathogenic bacteria to sense physical features in their environment. We will explore how these sensors generate and transmit signals which can trigger modulation of virulence-associated gene expression in some of the most common bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Vibrio species.202133279672
823180.9910The evolutionary atavistic endotoxin and neoplastic growth. A hypothesis on the potential role of atavistic endotoxin in carcinogenesis is proposed. The presence of an antigen identical to the endotoxin of gram-negative bacteria in tumour cells is confirmed by IgM class natural specific antibodies to endotoxin (IgMNAE) in rats by immunizing them with rat tumour tissue extracts. Rat normal tissue extracts do not increase the endogenous level of natural immunity to endotoxin, indicating the absence of a foreign antigen such as endotoxin in normal cells which are naturally devoid also of other parasitic features such as invasiveness and metastases, whereas tumour cells, during a prolonged latent period of carcinogenesis, acquire resistance to harmful factors, lose most of their genetic, antigenic, morphological and biochemical properties and become parasitic so as to survive in unfavourable conditions. With the regression of the mentioned properties of cells to the atavistic parasitic state, the synthesis of dormant endotoxin is activated together with an enhanced expression of evolutionary resistance-related genes and oncogenes. Atavistic endotoxin, produced and secreted by proliferating tumour cells, should cause chronic cachexia and septic states in cancer patients, similarly as in cases of endotoxemic septic shock where the endotoxin of gram-negative bacteria is the main pathogenic factor. Thus, the implications of the hypothesis indicate the diagnostic as well as prognostic and preventive significance of evolutionary atavistic endotoxin and also of endotoxin from gram-negative bacteria in human cancers. Natural specific antibodies to endotoxin can be helpful in creating new immunotherapeutic methods.201120943325
923190.9910CRISPR: new horizons in phage resistance and strain identification. Bacteria have been widely used as starter cultures in the food industry, notably for the fermentation of milk into dairy products such as cheese and yogurt. Lactic acid bacteria used in food manufacturing, such as lactobacilli, lactococci, streptococci, Leuconostoc, pediococci, and bifidobacteria, are selectively formulated based on functional characteristics that provide idiosyncratic flavor and texture attributes, as well as their ability to withstand processing and manufacturing conditions. Unfortunately, given frequent viral exposure in industrial environments, starter culture selection and development rely on defense systems that provide resistance against bacteriophage predation, including restriction-modification, abortive infection, and recently discovered CRISPRs (clustered regularly interspaced short palindromic repeats). CRISPRs, together with CRISPR-associated genes (cas), form the CRISPR/Cas immune system, which provides adaptive immunity against phages and invasive genetic elements. The immunization process is based on the incorporation of short DNA sequences from virulent phages into the CRISPR locus. Subsequently, CRISPR transcripts are processed into small interfering RNAs that guide a multifunctional protein complex to recognize and cleave matching foreign DNA. Hypervariable CRISPR loci provide insights into the phage and host population dynamics, and new avenues for enhanced phage resistance and genetic typing and tagging of industrial strains.201222224556
8214100.9909The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. The dlt operon in Gram-positive bacteria encodes proteins that are necessary for the addition of d-alanine to teichoic acids of the cell wall. The addition of d-alanine to the cell wall results in a net positive charge on the bacterial cell surface and, as a consequence, can decrease the effectiveness of antimicrobials, such as cationic antimicrobial peptides (CAMPs). Although the roles of the dlt genes have been studied for some Gram-positive organisms, the arrangement of these genes in Clostridium difficile and the life cycle of the bacterium in the host are markedly different from those of other pathogens. In the current work, we determined the contribution of the putative C. difficile dlt operon to CAMP resistance. Our data indicate that the dlt operon is necessary for full resistance of C. difficile to nisin, gallidermin, polymyxin B and vancomycin. We propose that the d-alanylation of teichoic acids provides protection against antimicrobial peptides that may be essential for growth of C. difficile in the host.201121330441
9173110.9909Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.202337095190
9213120.9909Emergence of antibiotic-resistant extremophiles (AREs). Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.201222907125
570130.9909Genetic instability and methylation tolerance in colon cancer. Microsatellite instability was first identified in colon cancer and later shown to be due to mutations in genes responsible for correction of DNA mismatches. Several human mismatch correction genes that are homologous to those of yeast and bacteria have been identified and are mutated in families affected by the hereditary non-polyposis colorectal carcinoma (HNPCC) syndrome. Similar alterations have been also found in some sporadic colorectal cancers. The mismatch repair pathway corrects DNA replication errors and repair-defective colorectal carcinoma cell lines exhibit a generalized mutator phenotype. An additional consequence of mismatch repair defects is cellular resistance, or tolerance, to certain DNA damaging agents.19968967715
580140.9909Acid-tolerant bacteria and prospects in industrial and environmental applications. Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F(1)-F(0)-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.202337093306
749150.9909Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg(2+), and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.202336533918
8290160.9909Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. In recent years, because of increased resistance to conventional antimicrobials, many researchers have started to study the synthesis of new antibiotics to control the disease-causing effects of infectious pathogens. Antimicrobial peptides (AMPs) are among the newest antibiotics; these peptides are integral compounds in all kinds of organisms and play a significant role in microbial ecology, and critically contribute to the innate immunity of organisms by destroying invading microorganisms. Moreover, AMPs may encourage cells to produce chemokines, stimulate angiogenesis, accelerate wound healing, and influence programmed cell death in multicellular organisms. Bacteria differ in their inherent susceptibility and resistance mechanisms to these peptides when responding to the antimicrobial effects of AMPs. Generally, the development of AMP resistance mechanisms is driven by direct competition between bacterial species, and host and pathogen interactions. Several studies have shown diverse mechanisms of bacterial resistance to AMPs, for example, some bacteria produce proteases and trapping proteins; some modify cell surface charge, change membrane fluidity, and activate efflux pumps; and some species make use of biofilms and exopolymers, and develop sensing systems by selective gene expression. A closer understanding of bacterial resistance mechanisms may help in developing novel therapeutic approaches for the treatment of infections caused by pathogenic organisms that are successful in developing extensive resistance to AMPs. Based on these observations, this review discusses the properties of AMPs, their targeting mechanisms, and bacterial resistance mechanisms against AMPs.201829957118
8183170.9908Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
8363180.9908Hundreds of antimicrobial peptides create a selective barrier for insect gut symbionts. The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.202438865264
9508190.9908Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens.201121417775