# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 340 | 0 | 0.9922 | Study of MFD-type repair in locus determining resistance of Escherichia coli to streptomycin. The yield of induced mutations to streptomycin resistance (Str) in E. coli, UV-irradiated and temporarily incubated in liquid medium not permitting protein synthesis, depends upon the conditions of preirradiation growth and preirradiation treatment of the bacteria, i.e. on their physiological state at the moment of irradiation. This fact is not readily reconciled with a model postulating mutation production in the structural genes of E. coli during excision repair. A preferred explanation is offered, based on the assumption that the efficiency of mutagenesis at the rpsL (strA) locus is determined by interference of antimutagenic (generalized excision repair and MFD) and promutagenic (mutation fixation of excision repair) events. The participation of macromolecular syntheses in Str mutation fixation is suggested. | 1986 | 3537780 |
| 342 | 1 | 0.9918 | Heat-shock-increased survival to far-UV radiation in Escherichia coli is wavelength dependent. Heat-shock-induced resistance to far-UV (FUV) radiation was studied in Escherichia coli. The induction of FUV resistance was shown to be dependent on the products of the genes uvrA and polA in bacteria irradiated at 254 nm. Heat shock increased the resistance to 280 nm radiation in a uvrA6 recA13 mutant. Heat shock lowered the mutation frequency (reversion to tryptophan proficiency) in wild-type or uvrA strains irradiated at 254 nm. When these strains were irradiated at 280 nm, heat shock did not interfere with the mutation frequency in the wild-type strain, but greatly enhanced mutations in the uvrA mutant. After heat-shock treatment, the wild-type strain irradiated at 254 nm showed increased DNA degradation, indicating enhanced repair activity. However, heat shock did not stimulate SOS repair triggered by FUV. An increased survival of bacteriophages irradiated with FUV and inoculated into heat-shock-treated bacteria was not detected. The possibility that heat shock enhances excision repair activity in a wavelength-dependent manner is discussed. | 1994 | 8176549 |
| 6048 | 2 | 0.9916 | Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future. | 2019 | 31159278 |
| 6212 | 3 | 0.9916 | Strain differences in the susceptibility and resistance of Pasteurella multocida to phagocytosis and killing by rabbit polymorphonuclear neutrophils. The interactions of 2 capsular serotype A and 4 serotype D strains of Pasteurella multocida with rabbit polymorphonuclear neutrophils (PMN) were compared in vitro, using a PMN phagocytic and bactericidal assay. Bacteria and rabbit PMN were incubated for 15 minutes. The suspensions were subjected to differential centrifugation and the percentage of phagocytosis (cell association) was determined from the number of viable noncell-associated bacteria. The cell pellets and the associated bacteria were resuspended and PMN bactericidal activity was calculated from the number of remaining viable cell-associated bacteria at 45 and 75 minutes after the start of the assay. Test bacteria were not opsonized or were opsonized with immune serum containing active complement. One type A strain was ingested and killed by PMN in the presence and absence of opsonins. The 5 remaining strains were resistant to PMN killing, but only the type A strain resisted phagocytosis. Resistance of the type A strain was attributed to the hyaluronic acid capsule, since pretreatment of the bacteria with hyaluronidase rendered opsonized bacteria susceptible to ingestion and killing. The pattern of resistance of the 4 type D strains was different from that of the resistant type A strain. Both opsonized and nonopsonized type D bacteria became cell associated, but none were killed by PMN. The mechanism of resistance of these 4 strains to PMN bactericidal activity is currently unknown. | 1984 | 6742581 |
| 8860 | 4 | 0.9915 | Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria. | 2020 | 32257371 |
| 6170 | 5 | 0.9915 | Resistance and susceptibility of mice to bacterial infection. IV. Functional specificity in natural resistance to facultative intracellular bacteria. The effect of opsonic antibody on resistance of susceptibility of three strains of mice, C57Bl/10, BALB/c, and CBA to the intracellular bacteria Listeria monocytogenes, Salmonella typhimurium, and Brucella abortus was tested. Bacteria were opsonized by serum treatment before their injection into mice, or the mice were preimmunized by injection with alcohol killed bacteria which induces antibody without macrophage activation. Antibody did not increase the rate of clearance of Listeria from the bloodstream, nor did it affect the subsequent growth of that organism in the spleen and liver. Blood clearance of S. typhimurium and of B. abortus was increased by preopsonization with specific antibody, indicating that opsonins were a limiting factor in resistance to these two bacteria. However, neither opsonization before infection nor immunization with alcohol killed vaccines had any effect on the strain distribution of resistance/susceptibility, which differs for each of the three intracellular pathogens. Thus, even in the presence of adequate opsonization the three strains of mice showed different patterns of resistance/susceptibility to Listeria, S. typhimurium, and B. abortus. This implies that each has a unique cellular mechanism of early nonspecific resistance. | 1983 | 6413682 |
| 6040 | 6 | 0.9914 | Investigating the antibacterial effects of some Lactobacillus, Bifidobacterium and acetobacter strains killed by different methods on Streptococcus mutans and Escherichia coli. Although there are many health advantages assigned to different live bacteria such as probiotics, some health threatening effects have also been reported. For example, live bacteria can transfer antibiotic resistance genes to other commensal and opportunistic bacteria of gastrointestinal tract. Recently, it was shown that using killed bacteria have some advantages over live ones. In this research, heat, paraformaldehyde and ozone killing methods were used to kill the bacteria. Acetobacter cerevisiae, Lactobacillus acidophilus, Bifidobacterium lactis and traditional vinegar and fermented dairy product (Kumeh) derived bacteria were killed and their antibacterial activity against Streptococcus mutans and Escherichia coli was investigated. To identify the bacteria isolated from the traditional products, 16S rDNA gene was partially sequenced. The gene analysis showed vinegar and Kumeh derived bacteria were Acetobacter pasteurianus and Lactobacillus crustorum (LcK) strains respectively. The S. mutans growth inhibition was detected in the all concentrations of all killed samples. However, generally, E. coli showed more resistant to the killed bacteria than S. mutans and the antibacterial effect of heat-killed bacteria against E. coli was not observed in the all concentrations for some killed bacteria. Among the pathogenic bacteria, S. mutans was the most sensitive one to the killed bacteria with 70% of reduction in its viability. In conclusion, this research showed that different killed bacteria had different effects on other bacteria and the killing method showed an impact on these effects. Overall, paraformaldehyde-killed L.crustorum (LcK) showed the best antibacterial activity against S. mutans; about 70% decrease in bacterial viability. | 2019 | 31998811 |
| 638 | 7 | 0.9912 | Genetic Determinants of Salmonella enterica Serovar Typhimurium Proliferation in the Cytosol of Epithelial Cells. Intestinal epithelial cells provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastrointestinal infections. In infected epithelial cells, a subpopulation of S Typhimurium bacteria damage their internalization vacuole, leading to escape from the Salmonella-containing vacuole (SCV) and extensive proliferation in the cytosol. Little is known about the bacterial determinants of nascent SCV lysis and subsequent survival and replication of Salmonella in the cytosol. To pinpoint S Typhimurium virulence factors responsible for these steps in the intracellular infectious cycle, we screened a S Typhimurium multigene deletion library in Caco-2 C2Bbe1 and HeLa epithelial cells for mutants that had an altered proportion of cytosolic bacteria compared to the wild type. We used a gentamicin protection assay in combination with a chloroquine resistance assay to quantify total and cytosolic bacteria, respectively, for each strain. Mutants of three S Typhimurium genes, STM1461 (ydgT), STM2829 (recA), and STM3952 (corA), had reduced cytosolic proliferation compared to wild-type bacteria, and one gene, STM2120 (asmA), displayed increased cytosolic replication. None of the mutants were affected for lysis of the nascent SCV or vacuolar replication in epithelial cells, indicating that these genes are specifically required for survival and proliferation of S Typhimurium in the epithelial cell cytosol. These are the first genes identified to contribute to this step of the S Typhimurium infectious cycle. | 2016 | 27698022 |
| 333 | 8 | 0.9912 | Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product. | 1978 | 360222 |
| 196 | 9 | 0.9911 | A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels. | 2008 | 18502856 |
| 6363 | 10 | 0.9911 | The effect of tetronasin and monensin on fermentation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. The Gram-negative rumen bacteria Fibrobacter succinogenes S85, Prevotella ruminicola M384 and Veillonella parvula L59 were grown in media containing successively increasing concentrations of the ionophores, monensin and tetronasin. All three species became more resistant to the ionophore with which they were grown. Increased resistance to one ionophore caused increased resistance to the other, and cross-resistance to another ionophore--lasalocid--and an antibiotic--avoparcin. Recovery of tetronasin-resistant bacteria from the rumen of monensin-fed sheep increased and vice versa, indicating that similar cross-resistance occurred in vivo. | 1993 | 8407673 |
| 6052 | 11 | 0.9911 | Safety and technological application of autochthonous Streptococcus thermophilus cultures in the buffalo Mozzarella cheese. Thermophilic and mesophilic lactic acid bacteria (LAB), such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus helveticus, and Lactococcus lactis, play a crucial role in the technological and sensory quality of Mozzarella cheese. In this study, the safety (genes encoding virulence factors and antibiotic resistance) and acidifying activity of autochthonous S. thermophilus cultures were evaluated in order to choose the most suitable strain for industrial application. The safe and good acidifying culture was tested in two buffalo Mozzarella cheese batches: Mozzarella cheeses produced with autochthonous culture (SJRP107) and commercial culture (STM5). The cultivable LAB was evaluated by culture-dependent method (plate counting) and the quantification of S. thermophilus cultures (commercial and autochthonous) were evaluated by culture-independent method RealT-qPCR (real-time quantitative polymerase chain reaction). The texture, physicochemical and proteolytic properties of the Mozzarella cheeses were similar for both batches. The nonstarter LAB count was higher during manufacture than in the storage, and the RealT-qPCR indicated the presence of S. thermophilus culture until the end of storage. S. thermophilus SJRP107 presented high potential for safety application in the production of Mozzarella cheese. Furthermore, considering the culture characteristics and their relationship with product quality, further studies could be helpful to determine their effect on the sensory characteristics of the cheese. | 2020 | 31948624 |
| 3582 | 12 | 0.9911 | Investigating the transmissibility of tet(W) in bifidobacteria exposed to acid and bile stress. Transfer of antibiotic resistance genes from probiotic bacteria to pathogens poses a safety concern. Orally administered probiotics are exposed to stressful conditions during gastrointestinal transit. In this study, filter mating experiments were performed to investigate the potential role of exposure of Bifidobacterium isolates to acid and bile stress on the transfer of a tetracycline resistance gene, tet(W), to Enterococcus faecalis ATCC 51299. No E. faecalis transconjugants were obtained after mating with either stressed or unstressed Bifidobacterium, thereby suggesting that tet(W) could not be transferred as a result of exposure to gastrointestinal stresses. | 2018 | 29662736 |
| 4805 | 13 | 0.9910 | Effects of ionophores on Enterococcus faecalis and E. faecium growth in pure and mixed ruminal culture. Enterococcus faecalis and E. faecium are gram-positive human pathogens that can live in the gastrointestinal tract of food animals. Vancomycin-resistant enterococci are an increasing threat to humans as a nosocomial infection, as well as a reservoir of antibiotic resistance genes. Ionophores are feed-grade antimicrobials that are widely used to enhance the ruminal fermentation efficiency via inhibiting gram-positive bacteria by dissipating ion and proton gradients. Some bacteria can become resistant to ionophores, and this has prompted concerns about whether ionophore resistance can enhance antibiotic resistance in intestinal bacteria. Since enterococci are normal members of the ruminant intestinal tract and function as an antibiotic resistance reservoir, the present study investigated whether treatment with the most commonly used ionophores affected the growth of enterococci, and whether ionophore-resistant enterococci developed. Ionophores do inhibit the growth of enterococci in pure culture, but in our study did not alter populations in mixed ruminal bacterial culture. Ionophore-resistant isolates were not isolated during this study from pure or mixed cultures. Our results indicate that the role of ionophores in the dissemination of antibiotic resistance genes through the intestinal Enterococcus spp. appears to be limited. | 2008 | 18370609 |
| 3855 | 14 | 0.9910 | Effects of free antibiotic resistance genes in the environment on intestinal microecology of mice. The rapid spread of antibiotic resistance genes (ARGs) is a great challenge to the ecological safety and human health. The intestine of humans and animals is an important site for the increase and spread of ARGs due to the great diversity and abundance of microorganisms in the intestinal microecology. ARGs, including the intracellular (iARGs) and the extracellular (eARGs) ARGs, are usually introduced into the intestinal tract through the diet, and the iARGs are colonized and spread in the intestinal microbiota with the help of the host bacteria. However, whether the eARGs can enter the intestinal microorganisms in the absence of host bacteria is not known. Here, we show the transformation and the diffusion of the ampramycin resistance gene (Ap) carried by the free plasmid RK2 in the intestinal microbiota of mice. After two days of consecutive gavage with free RK2, the intracellular Ap gene increases from days 0-8 in the feces of mice, and has remained constant. Bacterial transformation happens in the small intestine, including proximal and distal jejuna and proximal and distal ilea, at the early stage (first two days), and the intracellular RK2 is diffused into the intestinal microbiota of mice by conjugation on days 2-8 day, which is based on the distribution of eARG and iARG and the mRNA expression levels of trbBp, trfAp, korA, korB, and trbA. The characteristics of ARGs susceptible microbiota for transformation are analyzed using 16s rRNA gene sequencing, transmission electron microscopy, and flow cytometric. The ingestion of RK2 affects the composition of intestinal microbiota especially for Proteobacteria, and the antibiotic residue promotes the increase in Escherichia coli. These findings are important to assess the risk of ARGs, especially the eARGs in the intestinal microecology. | 2020 | 32798757 |
| 8737 | 15 | 0.9909 | Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans. OBJECTIVE: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries. METHODS: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining. RESULTS: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system. CONCLUSION: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain. | 2025 | 40162656 |
| 6230 | 16 | 0.9909 | dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Large numbers of bacteria coexist in the oral cavity. Streptococcus sanguinis, one of the major bacteria in dental plaque, produces hydrogen peroxide (H(2)O(2)), which interferes with the growth of other bacteria. Streptococcus mutans, a cariogenic bacterium, can coexist with S. sanguinis in dental plaque, but to do so, it needs a means of detoxifying the H(2)O(2) produced by S. sanguinis. In this study, we investigated the association of three oxidative stress factors, Dpr, superoxide dismutase (SOD), and AhpCF, with the resistance of S. sanguinis to H(2)O(2). The knockout of dpr and sod significantly increased susceptibility to H(2)O(2), while the knockout of ahpCF had no apparent effect on susceptibility. In particular, dpr inactivation resulted in hypersensitivity to H(2)O(2). Next, we sought to identify the factor(s) involved in the regulation of these oxidative stress genes and found that PerR negatively regulated dpr expression. The knockout of perR caused increased dpr expression levels, resulting in low-level susceptibility to H(2)O(2) compared with the wild type. Furthermore, we evaluated the roles of perR, dpr, and sod when S. mutans was cocultured with S. sanguinis. Culturing of the dpr or sod mutant with S. sanguinis showed a significant decrease in the S. mutans population ratio compared with the wild type, while the perR mutant increased the ratio. Our results suggest that dpr and sod in S. mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H(2)O(2) in regulating the expression of Dpr. | 2013 | 23263955 |
| 320 | 17 | 0.9909 | Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work. | 2002 | 12084480 |
| 7649 | 18 | 0.9909 | Pathogenic bacteria in biogas plants using cattle, swine, and poultry manure. Fugate, a waste product from biogas production, regularly used in agriculture as a fertiliser, may contain bacterial pathogens that cause zoonoses. Anaerobic digestion (AD) can inactivate viable pathogens, including parasites, viruses, and pathogens containing antibiotic resistance genes. This study aimed to compare the numbers of pathogenic bacteria and diversity of potential bacterial pathogens in the fugate using three different types of slurry: cattle, swine, and poultry manure. The swine fugate showed higher numbers of Clostridium perfringens and Campylobacter sp. than the poultry and cattle fugate. In the cattle fugate, the lowest total number of pathogenic bacteria and a low number of coliforms were detected after the AD. The use of cattle manure in biogas plants presents a lower potential for soil contamination with pathogens. The fugate produced using poultry or swine manure can be used carefully to avoid possibility of contamination of aquifers or surface waters. Also fugate produced from manure of cows suffering from chronic botulism can be used only with carefulness because of the presence of Clostridium botulinum spores in biogas waste of diseased cows. | 2025 | 40735305 |
| 3616 | 19 | 0.9909 | The Effects of Antiperspirant Aluminum Chlorohydrate on the Development of Antibiotic Resistance in Staphylococcus epidermidis. This study investigates the effects of the antiperspirant aluminum chlorohydrate on the development of antibiotic resistance in commensal Staphylococcus epidermidis isolates. The isolates were exposed to aluminum chlorohydrate for 30 days. The bacteria that developed resistance to oxacillin and ciprofloxacin were isolated, and the expression levels of some antibiotic resistance genes were determined using quantitative reverse transcriptase PCR. Before and after exposure, the minimum inhibitory concentration (MIC) values of the bacteria were determined using the microdilution method. A time-dependent increase was observed in the number of bacteria that developed resistance and increased MIC values. Consistent with the ciprofloxacin resistance observed after exposure, an increase in norA, norB/C, gyrA, gyrB, parC, and parE gene expression was observed. In addition to aluminum chlorohydrate exposure, oxacillin resistance was observed in all test bacteria in the group only subcultured in the medium, suggesting that phenotypic resistance cannot be correlated with chemical exposure in light of these data. The increase in mecA gene expression in selected test bacteria that acquired resistance to oxacillin after exposure compared with control groups suggests that the observed resistance may have been related to aluminum chlorohydrate exposure. To our knowledge, this is the first time in the literature that the effects of aluminum chlorohydrate as an antiperspirant on the development of antibiotic resistance in Staphylococcus epidermidis have been reported. | 2023 | 37110371 |