INFLUENZA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
247700.9623Evaluation of targeted next-generation sequencing for microbiological diagnosis of acute lower respiratory infection. PURPOSE: To evaluate the performance of targeted next-generation sequencing (tNGS) in pathogen detection in acute lower respiratory infection. METHODS: The retrospective study was conducted between July 2023 and May 2024 at the Yantai Yuhuangding Hospital. Patients with acute lower respiratory infections were included. Qualified sputum or bronchoalveolar lavage fluid samples were collected for tNGS and conventional microbiological tests(CMTs), including culture, staining, polymerase chain reaction (PCR), and reverse transcription-PCR (RT-PCR). The time required and cost were counted. RESULTS: A total of 968 patients were enrolled. Study analysis discovered 1,019 strains of bacteria, 259 strains of fungi, 302 strains of viruses, 76 strains of Mycoplasma pneumoniae, and two strains of Chlamydia psittaci using tNGS. In addition, tNGS also identified 39 mecA, four KPC, 19 NDM, and two OXA-48 genes. The positive rates for bacteria, fungi, viruses, mycoplasma, and chlamydia obtained using tNGS were significantly higher than those determined using traditional methods. Among them, tNGS showed high consistence with mycobacterium DNA test, influenza A (H1N1) virus nucleic acid test and COVID-19 nucleic acid test. Poor consistency between drug resistance genes and bacterial resistance phenotypes was found. In addition, tNGS also had advantages over traditional methods in terms of detection time and cost. CONCLUSION: Compared to traditional methods, tNGS had higher sensitivity in detecting bacteria, fungi, viruses, and other pathogens in acute lower respiratory infection, and also had the advantages of timeliness and cost-effectiveness, making it a promising method for guiding clinical diagnosis.202540901079
226810.9610Profile of Bacteria with ARGs Among Real-World Samples from ICU Admission Patients with Pulmonary Infection Revealed by Metagenomic NGS. BACKGROUND: Treatment of pulmonary infections in the intensive care unit (ICU) represents a great challenge, especially infections caused by antibiotic resistance pathogens. A thorough and up-to-date knowledge of the local spectrum of antibiotic resistant bacteria can improve the antibiotic treatment efficiency. In this study, we aimed to reveal the profile of bacteria with antibiotic resistance genes (ARGs) in real-world samples from ICU admission patients with pulmonary infection in Mainland, China, by metagenomic next-generation sequencing (mNGS). METHODS: A total of 504 different types of clinical samples from 452 ICU admission patients with pulmonary infection were detected by mNGS analysis. RESULTS: A total of 485 samples from 434 patients got successful mNGS results. Among 434 patients, one or more bacteria with ARGs were detected in 192 patients (44.24%, 192/434), and ≥2 bacteria with ARGs were detected in 85 (19.59%, 85/434) patients. The predominant detected bacteria were Corynebacterium striatum (C. striatum) (11.76%, 51/434), Acinetobacter baumannii (A. baumannii) (11.52%, 50/434) and Enterococcus faecium (E. faecium) (8.99%, 39/434). ermX conferred resistance to MSL(B) and cmx to phenicol were the only two ARGs detected in C. striatum; in A. baumannii, most of ARGs were resistance-nodulation-division (RND)-type efflux pumps genes, which conferred resistance to multi-drug; ermB conferred resistance to MSL(B) and efmA to multi-drug were the predominant ARGs in E. faecium. Bacteria with ARGs were detected in 50% (140/280) bronchoalveolar lavage fluid (BALF) and 50.5% (48/95) sputum samples, which were significantly higher than in blood and cerebrospinal fluid (CSF) samples. CONCLUSION: High level of bacteria with ARGs was observed in clinical samples, especially BALF and sputum samples from ICU admission patients with pulmonary infection in Mainland, China. And C. striatum resistant to MSL(B) and/or phenicol, multi-drug resistance A. baumannii and E. faecium were the lead bacteria.202134866919
519320.9608Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.202438128408
140030.9606Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli.202235147175
147640.9602Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy.202032179139
516350.9599Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.202438429820
306460.9598High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications.202338136701
844270.9598Staphylococcus epidermidis undergoes global changes in gene expression during biofilm maturation in platelet concentrates. BACKGROUND: Staphylococcus epidermidis forms surface-attached aggregates (biofilms) when grown in platelet concentrates (PCs). Comparative transcriptome analyses were undertaken to investigate differential gene expression of S. epidermidis biofilms grown in PCs. STUDY DESIGN AND METHODS: Two S. epidermidis strains isolated from human skin (AZ22 and AZ39) and one strain isolated from contaminated PCs (ST02) were grown in glucose-supplemented Trypticase Soy Broth (TSBg) and PCs. RNA was extracted and sequenced using Illumina HiSeq. Differential expression analysis was done using DESeq, and significantly differentially expressed genes (DEGs) were selected. DEGs were subjected to Kyoto encyclopedia of genes and genomes and Gene Ontology analyses. Differential gene expression was validated with quantitative reverse transcription-PCR. RESULTS: A total of 436, 442, and 384 genes were expressed in AZ22, AZ39, and ST02, respectively. DEG analysis showed that 170, 172, and 117 genes were upregulated in PCs in comparison to TSBg, whereas 120, 135, and 89 genes were downregulated (p < .05) in mature biofilms of AZ22, AZ39, and ST02, respectively. Twenty-seven DEGs were shared by all three strains. While 76 DEGs were shared by AZ22 and AZ39, only 34 and 21 DEGs were common between ST02, and AZ22 and AZ39, respectively. Significant transcriptional expression changes were observed in genes involved in platelet-bacteria interaction, biofilm formation, production of virulence factors, and resistance to antimicrobial peptides and antibiotics. CONCLUSION: Differential gene expression in S. epidermidis is triggered by the stressful PC storage environment. Upregulation of virulence and antimicrobial resistance genes could have clinical implications for transfusion patients.202133904608
234480.9598Analysis of antibiotic resistance and genetic profile of conjunctival bacteria flora before and after cataract surgery. PURPOSE: To analyze antibiotic resistance and genetic profile of conjunctival bacteria flora before and after cataract surgery with the focus on coagulase-negative staphylococci (CNS) during cataract surgery and discuss the implications of this colonization as a potential risk of acquiring endophthalmitis. METHODS: After approval of the institutional review board and informed consent from patients had been obtained, conjunctival swabs for culture from 59 patients undergoing cataract surgery were taken of the fellow eye at baseline (C0) and from the eye to be operated before (T0) and after (T1) irrigation with povine-iodine 5%, and at the end of surgery (T2). Genes responsible for virulence (mecA, ica and atlE) and antibiotic profile were determined; strain clonality of persistent colonizing Staphylococcus epidermidis strains was established by the Multi-locus sequence typing (MLST). RESULTS: The frequency of CNS was significantly reduced in T1 (13.6%) from 81.4% in T0 and 86.4% in C0. The frequency of mecA, ica and atlE genes was 34.4%, 37.5% and 61.4%, respectively; and methicillin phenotypic resistance was 35.4%. S. epidermidis was the most frequent species isolated in every time point. MLST revealed in 7 patients 100% coincidence of the seven alleles of the S. epidermidis isolated previous to povine-iodine 5% disinfection and at the end of the surgery. CNS isolates from T1 or T2 corresponded to the same species, antibiotic and virulence profile as those isolates from C0 or T0. CONCLUSION: Povidone-iodine 5% prophylaxis before surgery significantly reduced conjunctival contamination; in those that persisted, the source of contamination was mostly the patient's microbiota confirmed by the MLST system.202335943639
520290.9597Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Objectives A multidrug-resistant bacterium, Stenotrophomonas sp. SXG-1, was isolated from the liver of diseased hybrid sturgeon from Guizhou province, China. Methods Whole-genome sequencing was performed on the Illumina HiSeq 2500-PE125 platform with MPS (massively parallel sequencing) Illumina technology. All good quality paired reads were assembled using the SOAPdenovo into a number of scaffolds. PHI (Pathogen Host Interactions), VFDB (Virulence Factors of Pathogenic Bacteria) and ARDB (Antibiotic Resistance Genes Database) were used to analyses pathogenicity and drug resistance. Results Here we reported the complete genome sequence of Stenotrophomonas sp. SXG-1, which comprised 4534,602bp in 4077 coding sequences (CDS) with a G+C content of 66.42%. The genome contained 4 gene islands, 72 tRNAs and 13 rRNAs. According to the annotation analysis, strain SXG-1 encoded 22 genes related to the multidrug resistance. In addition to 10 genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, 12 genes of efflux pumps were presented, 9 of which were reported for the first time in Stenotrophomonas maltophilia. Conclusion This was the first complete genome sequence of Stenotrophomonas sp. isolated from the sturgeon. The complete genome sequence of Stenotrophomonas sp. strain SXG-1 may provide insights into the mechanism of antimicrobial resistance and prevent disease.202032311503
3069100.9597The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments.202540483807
2272110.9597Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention.202134537275
2193120.9596Distributions and Types of Multidrug-Resistant Acinetobacter baumannii in Different Departments of a General Hospital. BACKGROUND: Acinetobacter baumannii is the most prevalent strain in hospitals and different clinical departments. OBJECTIVES: The current study aimed to investigate the genetic characteristics and resistance mechanisms of A. baumannii isolated from clinical samples in Shaoxing people's hospital affiliated to Zhejiang University, Shaoxing, China. PATIENTS AND METHODS: Acinetobacter baumannii strains were isolated from blood, phlegm and skin of the patients hospitalized in different departments as respiratory medicine, plastic surgery and intensive care unit (ICU). Multilocus sequence typing (MLST) was used to characterize the isolates. Kirby-Bauer test was used to evaluate antibiotic resistance of the bacteria. The expression of resistance inducing genes was detected by reverse transcription polymerase chain reaction (RT-PCR). The results were analyzed and compared. RESULTS: Two bacterial types, ST208, and ST218, were identified in all 140 samples. The ST208 mainly came from ICU and department of respiratory medicine, while ST218 from department of plastic surgery; 70.21% of ST208 and 84.78% of ST218 were carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-susceptible Acinetobacter baumannii (CSAB), respectively. Multidrug-resistance genes in CRAB isolated from the hospital mainly included, oxa-23, oxa-5, intl 1 and qaceΔ1-sul 1. Besides, the highest and lowest antibiotic resistance was observed in the strains isolated from blood samples and wounds, respectively. CONCLUSIONS: The distribution of AB varies in different clinical departments and samples. In the hospital under study, the main types of AB were ST208 and ST218. The genes which affect the ability of antibiotic-resistance were oxa-23, oxa-51, intl 1 and qaceΔ1-sul 1.201526487921
6382130.9596Distribution status and influencing factors of antibiotic resistance genes in the Chaohu Lake, China. BACKGROUND: Chaohu Lake (CL) is one of the most polluted areas in China due to its high content of antibiotics. However, the distribution and influencing factors of antibiotic resistance genes (ARGs) in this lake are still controversial. METHODS: To solve this problem, we used metagenomic sequencing to investigate the distribution and in-fluencing factors of ARGs in CL. RESULTS: Our findings revealed the existence of nine kinds of ARGs, including 45 specific genes. The most abundant types were multidrug, bacitracin, polymyxin, macrolide lincosamide streptogramin, and aminoglycoside. Multiple microorganisms were undeniable ARG reservoirs, although they were not dominant species in the microbiota. Our results also showed that both the microbiota and physiochemical factors played important roles in shaping the distributions of ARGs in CL. Specifically, the levels of PO4-P (0.5927) and total phosphorus (0.4971) had a greater impact than total nitrogen (0.0515), NO(3-)N (0.0352), NO2-N (-0.1975), and NH3-N (-0.0952). CONCLUSIONS: These findings provide valuable insights into the distribution and influencing factors of ARGs in lakes.202540297464
2484140.9595Multilocus sequence typing analysis and second-generation sequencing analysis of Salmonella Wandsworth. BACKGROUND: Salmonella Wandsworth is a rare serotype of Salmonella. This study analyzed the genotyping, genome structure, and molecular biological functions of Salmonella Wandsworth based on the results of multilocus sequence typing and next-generation sequencing genome assembly analysis. METHODS: Serological typing was performed using the slide-agglutination method. The micro broth dilution method was used to test antibiotic susceptibility. Multilocus sequence typing (MLST) was used to perform the homology analysis, while the second-generation sequencing genome analysis was used to analyze the whole genome of the bacteria. RESULTS: Salmonella Wandsworth is Group Q Salmonella. The MLST of this strain was ST1498. Salmonella Wandsworth was sensitive to antibiotics, such as ceftriaxone, imipenem, chloramphenicol, and colistin, but was resistant to ampicillin, cefalotin, gentamicin, and ciprofloxacin. The second-generation sequencing results showed that the genome sequence length of the bacteria was 5109457bp. Annotated COG library analysis generated 3,746 corresponding genes. After the comparison with the KEGG library, 1,340 genes, which participate in 19 types of metabolic pathways, were obtained. A total of 249 pathogenic factors and 2 disease islands were predicted. 2 CRISPR sites and 8 Cas sites were predicted. It can be seen from the evolutionary tree that Salmonella Wandsworth MLST1498 and Paratyphi B str.SPB7 are gathered together. We identified one resistance gene, namely, aac(6')-Iaa accounting for aminoglycoside resistance. CONCLUSION: Salmonella Wandsworth isolated in this study is Salmonella group Q. Consequently, it is necessary to strengthen the understanding of clinical infections of Salmonella Wandsworth and carry out continuous monitoring and research.202134245607
1473150.9594Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
3494160.9594Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m(3), and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m(3), peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases.202540222613
3065170.9594Species diversity, virulence, and antimicrobial resistance of the nasal staphylococcal and mammaliicoccal biota of reindeer. BACKGROUND: Staphylococcus (S.) spp. and Mammaliicoccus (M.) spp., in addition to their established role as components of the human and animal microbiota, can also cause opportunistic infections. This study aimed to characterize bacteria recovered from nasal cavities of healthy adult reindeer from two farms located in Poland (15 reindeer) and Germany (15 reindeer). The research include bacteria isolation, species identification, detection of selected superantigen (SAg) genes, assessment of biofilm-forming capability in vitro, and evaluation of antimicrobial resistance. RESULTS: Seventy-four staphylococci and mammaliicocci from 14 different species were isolated from 30 nasal swabs, with one to four strains obtained from each reindeer. The most frequently identified species was S. equorum, followed by S. succinus, M. sciuri, S. xylosus, M. lentus, S. chromogenes, S. devriesei, M. vitulinus, S. auricularis, S. agnetis, S. edaphicus, S. petrasii, S. simulans, and S. warneri. A greater species diversity was observed among the reindeer from Poland compared to those from Germany. All isolated bacteria were coagulase negative and clumping factor negative and did not carry any of the 21 analyzed SAg genes. M. sciuri demonstrated the highest antimicrobial resistance (100%), followed by S. succinus (91%) and S. equorum (78%). Resistance to rifampicin was the most common (30% strains). Sixteen strains (22%) exhibited biofilm production at least 10% greater than the strong biofilm-forming S. aureus ATCC 6538. CONCLUSIONS: This study reveals a significant knowledge gap regarding the nasal microbiota of reindeer. It contributes to our understanding of staphylococcal and mammaliicoccal biota of reindeer and underscores the necessity for monitoring of microbial populations to assess their health implications for both animals and humans, particularly concerning the zoonotic transmission of bacteria.202540452044
2188180.9593Detection of Virulence Factors and Antibiotic Resistance Pattern of Clinical and Intensive Care Unit Environmental Isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is a gram-negative non-glucose fermenting aerobic bacteria and an opportunistic pathogen in humans and animals. The present study was carried out to investigate the distribution of virulence factors and antibiotic resistance properties of P. aeruginosa isolated from patients and intensive care unit (ICU) environment. MATERIAL AND METHODS: A total of 116 P. aeruginosa isolated from patients and ICU environment were collected from Besat hospital in Hamadan, the West of Iran. P. aeruginosa isolates were analyzed based on the presence of the virulence factors encoding genes included exoA, exoS, exoU, and algD using polymerase chain reaction (PCR). Antimicrobial susceptibility test was performed using a disk diffusion method. RESULTS: The results showed the prevalence of exoA 33 (56.9%), exoS 21 (36.20%), exoU 37 (63.8%), and algD 35 (60.34%) genes in ICU environment P. aeruginosa strains and exo A 23 (39.25%), exoS 25 (43.1%), exoU 40(68.98%), and algD 25 (43.1%) genes in clinical isolates of P. aeruginosa. High resistance levels of the clinical and ICU environment isolate to ampicillinsulbactam (100%), were also observed. CONCLUSION: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections.202031889501
5198190.9593In-depth comparative pathogenome, virulome, and resistome analysis of an extensive drug resistant Ralstonia mannitolilytica strain isolated from blood. INTRODUCTION: Ralstonia mannitolilytica is an global opportunistic pathogen responsible for various diseases. In this study, we reported the genome of a R. mannitolilytica isolate responsible for bacteremia in an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: Bacterial identification was performed with a Vitek2™ Automated System and 16S rRNA sequencing with BLASTn against the Non-Redundant Protein Sequence (Nr) database. Genome sequencing and analysis were performed using PacBio RS II sequencer, Hierarchical Genome Assembly Process assembly, as well as multiple annotation databases to better understand the innate features. Antibiotic resistance genes and virulence factors were specifically identified through Antibiotic Resistance Genes database and Virulence Factors of Pathogenic Bacteria databases. RESULTS: The complete genome sequence was assembled into two chromosomes with 3,495,817 bp and 1,342,871 bp in length and GC% of 65.37 % and 66.43 %, respectively. The two chromosomes were fully annotated. In chromosome 1 and 2, 19 and 14 antibiotic resistant genes and 48 and 55 virulence factors were predicted, respectively. Specifically, beta-lactam resistance genes bla(OXA-443), bla(OXA-444) were acquired. CONCLUSIONS: This study aids in the understanding of the innate features of R. mannitolilytica in AECOPD.202439306054