# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7755 | 0 | 0.9806 | Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river. | 2019 | 31726563 |
| 7276 | 1 | 0.9806 | Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. The main objective of this study was to investigate the antibiotic resistance (AR) levels in wastewater (WW) and the impact on the receiving river. Samples were collected once per season over one year in the WW of a hospital, in the raw and treated WW of two wastewater treatment plants (WWTPs), as well as upstream and downstream from the release of WWTPs effluents into the Zenne River (Belgium). Culture-dependent methods were used to quantify Escherichia coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. Six antibiotic resistance genes (ARGs) were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that WWTPs efficiently removed antibiotic resistant bacteria (ARB) regardless of its AR profile. The ARGs levels were the highest in the hospital WW and were significantly reduced in both WWTPs. However, ARB and ARGs abundances significantly increased into the Zenne River downstream from the WWTPs outfalls. The variation in the relative abundance of ARGs through WW treatment differed depending on the WWTP, fraction, and gene considered. The sul1 and sul2 genes in PAB fraction showed significantly higher relative abundances in the effluent compared to the influent of both WWTPs. This study demonstrated that WWTPs could be hotspots for AR spread with significant impacts on receiving freshwater ecosystems. This was the first comprehensive study investigating at the same time antibiotics occurrence, fecal bacteria indicators, heterotrophic bacterial communities, and ARGs (distinguishing PAB and FLB) to assess AR levels in WW and impacts on the receiving river. | 2018 | 29730567 |
| 7277 | 2 | 0.9803 | Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. This study aims to investigate the prevalence of clinically relevant carbapenemases genes (bla(KPC), bla(NDM) and bla(OXA-48)) in water samples collected over one-year period from hospital (H), raw and treated wastewater of two wastewater treatment plants (WWTPs) as well as along the Zenne River (Belgium). The genes were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that absolute abundances were the highest in H waters. Although absolute abundances were significantly reduced in WWTP effluents, the relative abundance (normalized per 16S rRNA) was never lowered through wastewater treatment. Particularly, for the PAB the relative abundances were significantly higher in the effluents respect to the influents of both WWTPs for all the genes. The absolute abundances along the Zenne River increased from upstream to downstream, peaking after the release of WWTPs effluents, in both fractions. Our results demonstrated that bla(KPC), bla(NDM) and bla(OXA-48) are widely distributed in the Zenne as a consequence of chronic discharge from WWTPs. To conclude, the levels of carbapenemases genes are significantly lower than other genes conferring resistance to more widely used antibiotics (analyzed in previous studies carried out at the same sites), but could raise up to the levels of high prevalent resistance genes. | 2018 | 29960932 |
| 7134 | 3 | 0.9802 | Elevated levels of antibiotic resistance in groundwater during treated wastewater irrigation associated with infiltration and accumulation of antibiotic residues. Treated wastewater irrigation (TWW) releases antibiotics and antibiotic resistance genes (ARGs) into the environment and might thus promote the dissemination of antibiotic resistance in groundwater (GW). We hypothesized that TWW irrigation increases ARG abundance in GW through two potential mechanisms: the contamination of GW with resistant bacteria and the accumulation of antibiotics in GW. To test this, the GW below a real-scale TWW-irrigated field was sampled for six months. Sampling took place before, during and after high-intensity TWW irrigation. Samples were analysed with 16S rRNA amplicon sequencing, qPCR of six ARGs and the class 1 integron-integrase gene intI1, while liquid chromatography tandem mass spectrometry was performed to detect antibiotic and pharmaceutical residues. Absolute abundance of 16S rRNA in GW decreased rather than increased during long-term irrigation. Also, the relative abundance of TWW-related bacteria did not increase in GW during long-term irrigation. In contrast, long-term TWW irrigation increased the relative abundance of sul1 and intI1 in the GW microbiome. Furthermore, GW contained elevated concentrations of sulfonamide antibiotics, especially sulfamethoxazole, to which sul1 confers resistance. Total sulfonamide concentrations in GW correlated with sul1 relative abundance. Consequently, TWW irrigation promoted sul1 and intI1 dissemination in the GW microbiome, most likely due to the accumulation of drug residues. | 2022 | 34555761 |
| 7278 | 4 | 0.9802 | Effects of snowmelt runoff on bacterial communities and antimicrobial resistance gene concentrations in an urban river in a cold climate region. Urban rivers are essential for human activities and ecosystems. Urban runoff is a major source of various pollutants in urban rivers. In this study, we investigated the effect of rainfall and snowmelt subsequently causing urban runoff in a cold climate region on bacterial community structures and antimicrobial resistance gene concentrations in an urban river in Sapporo city, Japan, which has an average snowfall of 4.8 m. Bacterial community structures of the river water were analyzed by next generation sequencing of bacterial 16S rRNA genes. The antimicrobial resistance genes, mphA and bla(IMP), were determined using quantitative polymerase chain reaction. Rainfall and snowmelt increased the effluent discharge rate of treated wastewater, and river water depth. Rainfall and snowmelt also increased Escherichia coli concentrations by 4-20 folds in the river, probably because of combined sewer overflows, urban runoff, or increased effluent discharge rate of treated wastewater to the river. Urban runoff and the subsequent discharge of treated wastewater decreased the bacterial alpha diversity and increased the species evenness of bacteria. Bacterial beta diversity analysis showed that the discharge of treated wastewater caused by rainfall and snowmelt changed the structure and diversity of the bacterial community in the river. The concentrations of the antimicrobial resistance gene mphA were related to the discharge of treated wastewater. In contrast, the antimicrobial resistance gene bla(IMP) appeared to be present in the upstream pristine environment. Results of this study should be informative for challenge to reduce the antimicrobial resistance bacteria due to combined sewer overflows by wastewater management authorities. | 2025 | 40042701 |
| 8000 | 5 | 0.9800 | Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process. The fate of antibiotic resistance genes (ARGs) in reclaimed water reuse system with integrated membrane process (IMR) was firstly investigated. Results indicated that ARGs, class 1 integrons (intI1) and 16S rRNA gene could be reduced efficiently in the IMR system. The absolute abundance of all detected ARGs in the reuse water after reverse osmosis (RO) filtration of the IMR system was 4.03 × 10(4) copies/mL, which was about 2-3 orders of magnitude lower than that in the raw influent of the wastewater treatment plants (WWTPs). Maximum removal efficiency of the detected genes was up to 3.8 log removal values. Daily flux of the summation of all selected ARGs in the IMR system decreased sharply to (1.02 ± 1.37) ×10(14) copies/day, which was 1-3 orders of magnitude lower than that in the activated sludge system (CAS) system. The strong clustering based on ordination analysis separated the reuse water from other water samples in the WWTPs. Network analysis revealed the existence of potential multi-antibiotic resistant bacteria. The potential multi-antibiotic resistant bacteria, including Clostridium and Defluviicoccus, could be removed effectively by microfiltration and RO filtration. These findings suggested that the IMR system was efficient to remove ARGs and potential multi-antibiotic resistant bacteria in the wastewater reclamation system. | 2020 | 31446351 |
| 7811 | 6 | 0.9799 | Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes. An anaerobic membrane bioreactor was retrofitted with polyvinylidene fluoride (PVDF) microfiltration membrane units, each of which was fouled to a different extent. The membranes with different degrees of fouling were evaluated for their efficiencies in removing three antibiotic-resistant bacteria (ARB), namely, bla(NDM-1)-positive Escherichia coli PI-7, bla(CTX-M-15)-positive Klebsiella pneumoniae L7, and bla(OXA-48)-positive E. coli UPEC-RIY-4, as well as their associated plasmid-borne antibiotic resistance genes (ARGs). The results showed that the log removal values (LRVs) of ARGs correlated positively with the extent of membrane fouling and ranged from 1.9 to 3.9. New membranes with a minimal foulant layer could remove more than 5 log units of ARB. However, as the membranes progressed to subcritical fouling, the LRVs of ARB decreased at increasing operating transmembrane pressures (TMPs). The LRV recovered back to 5 when the membrane was critically fouled, and the achieved LRV remained stable at different operating TMPs. Furthermore, characterization of the surface attributed the removal of both the ARB and ARGs to adsorption, which was facilitated by an increasing hydrophobicity and a decreasing surface ζ potential as the membranes fouled. Our results indicate that both the TMP and the foulant layer synergistically affected ARB removal, but the foulant layer was the main factor that contributed to ARG removal. | 2017 | 28957626 |
| 8008 | 7 | 0.9799 | Reductions of bacterial antibiotic resistance through five biological treatment processes treated municipal wastewater. Wastewater treatment plants are hot spots for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, limited studies have been conducted to compare the reductions of ARB and ARGs by various biological treatment processes. The study explored the reductions of heterotrophic bacteria resistant to six groups of antibiotics (vancomycin, gentamicin, erythromycin, cephalexin, tetracycline, and sulfadiazine) and corresponding resistance genes (vanA, aacC1, ereA, ampC, tetA, and sulI) by five bench-scale biological reactors. Results demonstrated that membrane bioreactor (MBR) and sequencing batch reactor (SBR) significantly reduced ARB abundances in the ranges of 2.80∼3.54 log and 2.70∼3.13 log, respectively, followed by activated sludge (AS). Biological filter (BF) and anaerobic (upflow anaerobic sludge blanket, UASB) techniques led to relatively low reductions. In contrast, ARGs were not equally reduced as ARB. AS and SBR also showed significant potentials on ARGs reduction, whilst MBR and UASB could not reduce ARGs effectively. Redundancy analysis implied that the purification of wastewater quality parameters (COD, NH4 (+)-N, and turbidity) performed a positive correlation to ARB and ARGs reductions. | 2016 | 27384166 |
| 7933 | 8 | 0.9799 | Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Low-pressure membrane filtration was investigated at pilot scale with regard to its removal of antimicrobial resistance genes (ARGs) in conventional secondary treated wastewater plant effluents. While operating microfiltration (MF) and ultrafiltration (UF) membranes, key operational parameters for antimicrobial resistance (AMR) studies and key factors influencing AMR removal efficiencies of low-pressure membrane filtration processes were examined. The main factor for AMR removal was the pore size of the membrane. The formation of the fouling layer on capillary membranes had only a small additive effect on intra- and extrachromosomal ARG removal and a significant additive effect on mobile ARG removal. Using feeds with different ARGs abundances revealed that higher ARG abundance in the feed resulted in higher ARG abundance in the filtrate. Live-Dead cell counting in UF filtrate showed intact bacteria breaking through the UF membrane. Strong correlations between 16S rRNA genes (as surrogate for bacteria quantification) and the sul1 gene in UF filtrate indicated ARBs likely breaking through UF membranes. | 2022 | 35598662 |
| 7858 | 9 | 0.9798 | Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment. | 2018 | 29984583 |
| 7279 | 10 | 0.9798 | Profiling of emerging contaminants and antibiotic resistance in sewage treatment plants: An Indian perspective. In India, sewage (partially-treated/ untreated) is randomly used for irrigation because of easy availability and presence of residual organics and nutrients. However, data on the occurrence of contaminants of emerging concerns (CECs) such as pharmaceuticals and personal care products (PPCPs) and antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in sewage is scarce in Indian perspective. Herein, for the first time, we present a quantitative contamination profiling of selected PPCPs and antibiotic resistance in untreated and biologically-treated sewage from three different sewage treatment plants, located in northern and central part of India. Profiling of PPCPs were done using LC-ESI-MS/MS whereas antibiotic resistance was analyzed using gradient PCR and qPCR techniques. PPCPs were detected both in untreated and treated samples (0.4 - 1340 μg/L). A reduction in ARB and ARG load (2-3 log) and an increase in ARG copy number with respect to beta lactams and tetracycline were observed in treated sewage. Triclosan, estrone and 17α-ethynylestradiol, ubiquitous in all samples, could be used as markers for performance monitoring of sewage treatment facilities. The results obtained in this study help evaluate health and ecological risks associated with the presence of CECs in treated sewage used for irrigation and frame future policies. | 2021 | 33383454 |
| 7088 | 11 | 0.9797 | Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were bla(TEM), tetA, sul1. The gene bla(OXA) demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment. | 2020 | 31561123 |
| 7924 | 12 | 0.9797 | Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction. Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. | 2018 | 29550711 |
| 7621 | 13 | 0.9795 | Pre-chlorination in source water endows ARB with resistance to chlorine disinfection in drinking water treatment. Chlorine disinfection is widely used to ensure biosafety of drinking water. However, antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are often detected in treated drinking water. The impact of chlorine disinfection on the abundance of ARGs in drinking water is currently contradictory. Some studies suggested that chlorine disinfection could reduce the abundance of ARGs, while others had found that chlorine disinfection increased the abundance of ARGs. Pre-chlorination is widely applied in raw water to kill the algae cells in source water Pump Station. Different distances between the source water Pump Station and the drinking water treatment plants (DWTPs) resulted in different degrees of residual chlorine decay in the incoming raw water. This study found that the abundance of ARGs in drinking water would be increased during chlorine disinfection when the chlorine concentration in raw water was higher (> 0.2 mg/L). On the contrary, chlorine disinfection would decrease the abundance of ARGs in drinking water when the chlorine concentration in raw water was lower (< 0.09 mg/L). Pre-chlorination in source water with sub-lethal concentration could allow ARB to adapt to the chlorine environment in advance, endowing ARB with chlorine resistance, which resulted in ineffective removal of ARB and increased ARGs abundance during subsequent chlorine disinfection. High abundance of chlorine and antibiotics co-resistance bacteria in raw water was the main reason for the increase in ARGs abundance in chlorine treated drinking water. It should be noticed that, pre-chlorination treatment in source water would increase the difficulty of removing ARGs in subsequent chlorine disinfection process. | 2025 | 40398032 |
| 7999 | 14 | 0.9795 | Occurrence and distribution of five antibiotic resistance genes during the loading period in sludge treatment wetlands. The objectives of this study were to clarify the distribution as well as the removal mechanism of antibiotic resistance genes (ARGs) within three sludge treatment wetlands (STWs) during a loading period of two years. Three STW units were constructed and run during the loading period: Unit 1 (U1) built with aeration tubes, Unit 2 (U2) built with aeration tubes and reeds, and Unit 3 (U3) built with reeds only. All targeted ARGs, intI1, and 16S rRNA were detected in residual sludge in the order of magnitude: 16S rRNA>sul1>intI1>sul2>tetC>tetA>ermB. The abundance of the five targeted ARGs, intI1, and 16S rRNA increased in residual sludge, during the loading period, which may be due to the increase in bacteria caused by the continuous import of exogenous nutrients. However, STWs can also remove ARGs from sewage during the loading period and the mean removal efficiency of five resistance genes was 73.0%. The removal rates of intI1 and 16S rRNA were 73.5% and 78.6%, respectively. Positive correlations were detected in abundance of most ARGs and intI1, as well as 16S rRNA (P < 0.05), indicating intI1 plays a vital part in the propagation of ARGs. The removal of bacteria harboring these genes also occurs in the STW units. | 2020 | 32771773 |
| 7812 | 15 | 0.9795 | Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. Proper treatment is necessary to reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in livestock manure before land application. Conventional stockpiling suffers unreliable removal efficiency, while composting can be complicated and expensive. The objective of this study was to test the feasibility of a novel heat-based technology, i.e., stockpiling manure on conductive concrete slabs, to inactivate ARB and ARGs in beef cattle manure. In this study, two independent bench-scale trials were conducted. In both trials, samples were taken from manure piles on conductive concrete slabs and regular slabs (i.e., heated and unheated piles). In the heated pile of the first trial, 25.9% and 83.5% of the pile volume met the EPA Class A and Class B biosolids standards, respectively. For the heated pile of the second trial, the two values were 43.9% and 74.2%. In both trials, nearly all forms of the total and resistant Escherichia coli and enterococci were significantly lower in the heated piles than in the unheated piles. Besides, significant reduction of ARGs in heated piles was observed in the first trial. Through this proof-of-concept study, the new technology based on conductive concrete slabs offers an alternative manure storage method to conventional stockpiling and composting with respect to reduce ARB and ARGs in manure. | 2021 | 33736325 |
| 5327 | 16 | 0.9795 | Occurrence of E. coli and antibiotic-resistant E. coli in the southern watershed of Lake Biwa, including in wastewater treatment plant effluent and inflow rivers. The emergence of antibiotic-resistant bacteria (ARB) and their antibiotic resistance genes (ARGs) poses a serious challenge to human, animal, and environmental health worldwide. ARB can spread into the environment via various sources and routes. In this study, we investigated the occurrence of antibiotic-resistant E. coli in the southern watershed of Lake Biwa. Two-year monitoring of antibiotic-resistant E. coli was carried out in the southern part of Lake Biwa and inflow rivers and at three WWTPs around the southern part of the lake. Concentrations of E. coli in waters that are resistant to ampicillin (AMP), cefotaxime (CTX), ceftazidime (CAZ), levofloxacin (LVFX), tetracycline (TC), and amikacin (AMK) were measured using the culture method. Of these antibiotic-resistant E. coli, AMP-resistant E. coli were found at the highest prevalence, followed by LVFX, CTX, CAZ, TC, and AMK-resistant in both the influent and effluent of WWTPs. These resistance patterns in wastewater are the same as those in clinical samples in Japan. The numbers of antibiotic-resistant E. coli decreased by around a factor of 1000 during the wastewater treatment processes, but the rates clearly increased, suggesting that selection for antibiotic resistance might occur during the wastewater treatment process. AMP-resistant and TC-resistant E. coli were also detected in Lake Biwa and inflow rivers, which suggests that antibiotic resistance might come from not only WWTPs but also livestock farms and small-scale wastewater treatment facilities located in the river catchment. | 2022 | 35314177 |
| 7306 | 17 | 0.9794 | Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments. Wastewater treatment plants (WWTPs) are point sources for both, the release of antibiotic resistance genes (ARGs) and the discharge of antibiotics (ABs) into the environment. While it is well established that ARGs emission by WWTPs leads to an ARGs increase in receiving rivers, also the role of sub-inhibitory AB concentrations in this context is being discussed. However, the results obtained in this study suggest that, at environmental concentrations, ABs do not have an effect on resistance selection. Instead, we emphasize the significance of ARG transport and, in that respect, highlight the relevance of wastewater particles and associated microorganisms. We can show that ARGs (ermB, bla(TEM,)tetM, qnrS) as well as facultative pathogenic bacteria (FPB) (enterococci, Pseudomonas aeruginosa, Acinetobacter baumannii) inside the particulate fraction of WWTP effluent are very likely to remain in the riverbed of the receiving water due to sedimentation. Moreover, ARG and FPB abundances measured in the particulate fraction strongly correlated with the delta ARG and FPB abundances measured in the receiving river sediment (downstream compared to upstream) (R(2) = 0.93, p < 0.05). Apparently, the sheer amount of settleable ARGs and FPB from WWTP effluent is sufficient, to increase abundances in the receiving riverbed by 0.5 to 2 log units. | 2019 | 30308888 |
| 7827 | 18 | 0.9794 | Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment are of great concern due to their potential risk to human health. The effluents from wastewater treatment plants and livestock production are major sources of ARB and ARGs. Chlorination, UV irradiation, and ozone disinfection cannot remove ARGs completely. In this study, the potential of electrochemical oxidation and electro-Fenton processes as alternative treatment technologies for inactivation of ARB and ARGs in both intracellular and extracellular forms was evaluated. Results showed that the electrochemical oxidation process was effective for the inactivation of selected ARB but not for the removal of intracellular ARGs or extracellular ARGs. The electro-Fenton process was more effective for the removal of both intracellular and extracellular ARGs. The removal efficiency after 120 min of electro-Fenton treatment under 21.42 mA/cm(2) was 3.8 logs for intracellular tetA, 4.1 logs for intracellular ampC, 5.2 logs for extracellular tetA, and 4.8 logs for extracellular ampC, respectively in the presence of 1.0 mmol/L Fe(2+). It is suggested that electrochemical oxidation is an effective disinfection method for ARB and the electro-Fenton process is a promising technology for the removal of both intracellular and extracellular ARGs in wastewater. | 2020 | 32701499 |
| 7181 | 19 | 0.9793 | Effects of UVC doses on the removal of antimicrobial resistance elements from secondary treated sewage. Wastewater treatment plants (WWTPs) currently face major challenges toward the removal of microcontaminants and/or microbial matrices and consequently play an important role in the potential dissemination of biological resistance in freshwater. The ultraviolet (UV) system is a tertiary treatment strategy increasingly applied worldwide, although many studies have shown that disinfected effluent can still contain antibiotic-resistant bacteria and resistance genes. Therefore, to better understand the effects of UV radiation doses on the removal of all resistance elements (antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes), the present study was designed using a pilot-scale photoreactor. The UV doses could be varied to investigate whether there is an optimal UV dose capable of removing all resistance elements and also if the UV dose frequently applied in full-scale systems is able to reduce the resistance elements. The effect of different UV doses (A, 0-10 mJ/cm(2); B, 10-15 mJ/cm(2); and C, > 15 mJ/cm(2)) in a pilot-scale photoreactor on the removal of antibiotics, antibiotic-resistant bacteria, and genes from the effluent of a UASB reactor followed by a biological trickling filter system (UASB-TF) fed with real sanitary sewage was investigated. Samples of influent and effluent from the UVC photoreactor were collected, and the concentration levels of norfloxacin (NOR), ciprofloxacin (CIP), and levofloxacin (LEV) were assessed. The qnrB, sul1, ermB, integron-integrase (intI1), and 16S rRNA genes, total heterotrophic bacteria (THB), and bacterial resistance to azithromycin and sulfamethoxazole were also investigated. Results indicated that LEV and intI1 were found in the highest median concentrations in the photoreactor influent. Although most antibiotics (NOR and CIP) and ARGs (intI1, 16S rRNA, and qnrB) were apparently better removed with the highest UV dose (> 15 mJ/cm(2)) applied, except for LEV, sul1, and ermB genes, the Kruskal-Wallis test reported no significant difference between low and high doses. ARB removal (from 80 to 100%) was observed at all UV doses. Principal component analysis (PCA) suggested a clear pattern of pollutant groups, i.e., antibiotics, ARG, and ARB, which exhibited low (median of 8-16%), medium (37-96%), and high (> 97%) removal percentages, respectively. These results demonstrated that UVC photoreactors can be an alternative to complement biological treatment in sewage treatment plants at the dose normally applied in full-scale WWTPs (> 15 mJ/cm(2)). However, there was no optimal single dose capable of removing all the resistance elements investigated. | 2025 | 39873874 |