# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5098 | 0 | 0.9898 | Feature selection and aggregation for antibiotic resistance GWAS in Mycobacterium tuberculosis: a comparative study. INTRODUCTION: Drug resistance (DR) of pathogens remains a global healthcare concern. In contrast to other bacteria, acquiring mutations in the core genome is the main mechanism of drug resistance for Mycobacterium tuberculosis (MTB). For some antibiotics, the resistance of a particular isolate can be reliably predicted by identifying specific mutations, while for other antibiotics the knowledge of resistance mechanisms is limited. Statistical machine learning (ML) methods are used to infer new genes implicated in drug resistance leveraging large collections of isolates with known whole-genome sequences and phenotypic states for different drugs. However, high correlations between the phenotypic states for commonly used drugs complicate the inference of true associations of mutations with drug phenotypes by ML approaches. METHODS: Recently, several new methods have been developed to select a small subset of reliable predictors of the dependent variable, which may help reduce the number of spurious associations identified. In this study, we evaluated several such methods, namely, logistic regression with different regularization penalty functions, a recently introduced algorithm for solving the best-subset selection problem (ABESS) and "Hungry, Hungry SNPos" (HHS) a heuristic algorithm specifically developed to identify resistance-associated genetic variants in the presence of resistance co-occurrence. We assessed their ability to select known causal mutations for resistance to a specific drug while avoiding the selection of mutations in genes associated with resistance to other drugs, thus we compared selected ML models for their applicability for MTB genome wide association studies. RESULTS AND DISCUSSION: In our analysis, ABESS significantly outperformed the other methods, selecting more relevant sets of mutations. Additionally, we demonstrated that aggregating rare mutations within protein-coding genes into markers indicative of changes in PFAM domains improved prediction quality, and these markers were predominantly selected by ABESS, suggesting their high informativeness. However, ABESS yielded lower prediction accuracy compared to logistic regression methods with regularization. | 2025 | 40606161 |
| 5163 | 1 | 0.9897 | Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep. | 2024 | 38429820 |
| 5143 | 2 | 0.9895 | Genomic Insights Into the Pathogenicity of a Novel Biofilm-Forming Enterococcus sp. Bacteria (Enterococcus lacertideformus) Identified in Reptiles. Whole genome analysis of a novel species of enterococci, Enterococcus lacertideformus, causing multi-systemic and invariably fatal disease in critically endangered Christmas Island reptiles was undertaken to determine the genetic elements and potential mechanisms conferring its pathogenic nature, biofilm-forming capabilities, immune recognition avoidance, and inability to grow in vitro. Comparative genomic analyses with related and clinically significant enterococci were further undertaken to infer the evolutionary history of the bacterium and identify genes both novel and absent. The genome had a G + C content of 35.1%, consisted of a circular chromosome, no plasmids, and was 2,419,934 bp in length (2,321 genes, 47 tRNAs, and 13 rRNAs). Multi-locus sequence typing (MLST), and single nucleotide polymorphism (SNP) analysis of multiple E. lacertideformus samples revealed they were effectively indistinguishable from one another and highly clonal. E. lacertideformus was found to be located within the Enterococcus faecium species clade and was closely related to Enterococcus villorum F1129D based on 16S rDNA and MLST house-keeping gene analysis. Antimicrobial resistance (DfreE, EfrB, tetM, bcrRABD, and sat4) and virulence genes (Fss3 and ClpP), and genes conferring tolerance to metals and biocides (n = 9) were identified. The detection of relatively few genes encoding antimicrobial resistance and virulence indicates that this bacterium may have had no exposure to recently developed and clinically significant antibiotics. Genes potentially imparting beneficial functional properties were identified, including prophages, insertion elements, integrative conjugative elements, and genomic islands. Functional CRISPR-Cas arrays, and a defective prophage region were identified in the genome. The study also revealed many genomic loci unique to E. lacertideformus which contained genes enriched in cell wall/membrane/envelop biogenesis, and carbohydrate metabolism and transport functionality. This finding and the detection of putative enterococcal biofilm determinants (EfaAfs, srtC, and scm) may underpin the novel biofilm phenotype observed for this bacterium. Comparative analysis of E. lacertideformus with phylogenetically related and clinically significant enterococci (E. villorum F1129D, Enterococcus hirae R17, E. faecium AUS0085, and Enterococcus faecalis OG1RF) revealed an absence of genes (n = 54) in E. lacertideformus, that encode metabolic functionality, which potentially hinders nutrient acquisition and/or utilization by the bacterium and precludes growth in vitro. These data provide genetic insights into the previously determined phenotype and pathogenic nature of the bacterium. | 2021 | 33737921 |
| 8356 | 3 | 0.9892 | Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles. Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology. | 2015 | 26279704 |
| 8400 | 4 | 0.9891 | Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis. BACKGROUND: Bacterial invasive infection and host immune response is fundamental to the understanding of pathogen pathogenesis and the discovery of effective therapeutic drugs. However, there are very few experimental studies on the signaling cross-talks between bacteria and human host to date. METHODS: In this work, taking M. tuberculosis H37Rv (MTB) that is co-evolving with its human host as an example, we propose a general computational framework that exploits the known bacterial pathogen protein interaction networks in STRING database to predict pathogen-host protein interactions and their signaling cross-talks. In this framework, significant interlogs are derived from the known pathogen protein interaction networks to train a predictive l(2)-regularized logistic regression model. RESULTS: The computational results show that the proposed method achieves excellent performance of cross validation as well as low predicted positive rates on the less significant interlogs and non-interlogs, indicating a low risk of false discovery. We further conduct gene ontology (GO) and pathway enrichment analyses of the predicted pathogen-host protein interaction networks, which potentially provides insights into the machinery that M. tuberculosis H37Rv targets human genes and signaling pathways. In addition, we analyse the pathogen-host protein interactions related to drug resistance, inhibition of which potentially provides an alternative solution to M. tuberculosis H37Rv drug resistance. CONCLUSIONS: The proposed machine learning framework has been verified effective for predicting bacteria-host protein interactions via known bacterial protein interaction networks. For a vast majority of bacterial pathogens that lacks experimental studies of bacteria-host protein interactions, this framework is supposed to achieve a general-purpose applicability. The predicted protein interaction networks between M. tuberculosis H37Rv and Homo sapiens, provided in the Additional files, promise to gain applications in the two fields: (1) providing an alternative solution to drug resistance; (2) revealing the patterns that M. tuberculosis H37Rv genes target human immune signaling pathways. | 2018 | 29954330 |
| 5145 | 5 | 0.9890 | Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BACKGROUND: Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. RESULTS: We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. CONCLUSION: The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. | 2015 | 26187596 |
| 5158 | 6 | 0.9889 | Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin. Salmonella Dublin is a host-adapted, invasive nontyphoidal Salmonella (iNTS) serovar that causes bloodstream infections in humans and demonstrates increasing prevalence of antimicrobial resistance (AMR). Using a global dataset of 1303 genomes, coupled with in vitro assays, we examined the evolutionary, resistance, and virulence characteristics of S. Dublin. Our analysis revealed strong geographical associations between AMR profiles and plasmid types, with highly resistant isolates confined predominantly to North America, linked to IncC plasmids co-encoding AMR and heavy metal resistance. By contrast, Australian isolates were largely antimicrobial-susceptible, reflecting differing AMR pressures. We identified two phylogenetically distinct Australian lineages, ST10 and ST74, with a small number of ST10 isolates harbouring a novel hybrid plasmid encoding both AMR and mercuric resistance. Whereas the ST10 lineage remains globally dominant, the ST74 lineage was less prevalent. ST74 exhibited unique genomic features including a larger pan genome compared to ST10 and the absence of key virulence loci, including Salmonella pathogenicity island (SPI)-19 which encodes a type VI secretion system (T6SS). Despite these genomic differences, the ST74 lineage displayed enhanced intracellular replication in human macrophages and induced less pro-inflammatory responses compared with ST10, suggesting alternative virulence strategies that may support systemic dissemination of ST74. The Vi antigen was absent in all ST10 and ST74 genomes, highlighting challenges for serotyping and vaccine development, and has implications for current diagnostic and control strategies for S. Dublin infections. Collectively, this study represents the most comprehensive investigation of S. Dublin to date and, importantly, has revealed distinct adaptations of two genotypes within the same serovar, leading to different epidemiological success. The regional emergence and evolution of distinct S. Dublin lineages highlight the need to understand the divergence of intra-serovar virulence mechanisms which may impact the development of effective control measures against this important global pathogen. | 2025 | 40560760 |
| 8203 | 7 | 0.9888 | Intercalated cell function, kidney innate immunity, and urinary tract infections. Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities. | 2024 | 38227050 |
| 4818 | 8 | 0.9887 | Complement Susceptibility in Relation to Genome Sequence of Recent Klebsiella pneumoniae Isolates from Thai Hospitals. The capacity to resist the bactericidal action of complement (C') is a strong but poorly understood virulence trait in Klebsiella spp. Killing requires activation of one or more C' pathways, assembly of C5b-9 membrane attack complexes (MACs) on the surface of the outer membrane (OM), and penetration of MACs into the target bilayer. We interrogated whole-genome sequences of 164 Klebsiella isolates from three tertiary hospitals in Thailand for genes encoding surface-located macromolecules considered to play a role in determination of C' resistance. Most isolates (154/164) were identified as Klebsiella pneumoniae, and the collection conformed to previously established population structures and antibiotic resistance patterns. The distribution of sequence types (STs) and capsular (K) types were also typical of global populations. The majority (64%) of isolates were resistant to C', and the remainder were either rapidly or slowly killed. All isolates carried genes encoding capsular polysaccharides (K antigens), which have been strongly linked to C' resistance. In contrast to previous reports, there were no differences in the amount of capsule produced by C'-resistant isolates compared to C'-susceptible isolates, nor was there any correlation between serum reactivity and the presence of hypermucoviscous capsules. Similarly, there were no correlations between the presence of genes specifying lipopolysaccharide O-side chains or major OM proteins. Some virulence factors were found more frequently in C'-resistant isolates but were considered to reflect clonal ST expansion. Thus, no single gene accounts for the C' resistance of the isolates sequenced in this study.IMPORTANCE Multidrug-resistant Klebsiella pneumoniae is responsible for an increasing proportion of nosocomial infections, and emerging hypervirulent K. pneumoniae clones now cause severe community-acquired infections in otherwise healthy individuals. These bacteria are adept at circumventing immune defenses, and most survive and grow in serum; their capacity to avoid C'-mediated destruction is correlated with their invasive potential. Killing of Gram-negative bacteria occurs following activation of the C' cascades and stable deposition of C5b-9 MACs onto the OM. For Klebsiella, studies with mutants and conjugants have invoked capsules, lipopolysaccharide O-side chains, and OM proteins as determinants of C' resistance, although the precise roles of the macromolecules are unclear. In this study, we sequenced 164 Klebsiella isolates with different C' susceptibilities to identify genes involved in resistance. We conclude that no single OM constituent can account for resistance, which is likely to depend on biophysical properties of the target bilayer. | 2018 | 30404929 |
| 5067 | 9 | 0.9886 | Stepwise Evolution of a Klebsiella pneumoniae Clone within a Host Leading to Increased Multidrug Resistance. Five bla(CTX-M-14)-positive Klebsiella pneumoniae isolates (KpWEA1, KpWEA2, KpWEA3, KpWEA4-1, and KpWEA4-2) were consecutively obtained from a patient with relapsed acute myeloid leukemia who was continuously administered antimicrobials. Compared with KpWEA1 and KpWEA2, KpWEA3 showed decreased susceptibility to antimicrobials, and KpWEA4-1 and KpWEA4-2 (isolated from a single specimen) showed further-elevated multidrug-resistance (MDR) phenotypes. This study aims to clarify the clonality of the five isolates and their evolutionary processes leading to MDR by comparison of these complete genomes. The genome comparison revealed KpWEA1 was the antecedent of the other four isolates, and KpWEA4-1 and KpWEA4-2 independently emerged from KpWEA3. Increasing levels of MDR were acquired by gradual accumulation of genetic alterations related to outer membrane protein expression: the loss of OmpK35 and upregulation of AcrAB-TolC occurred in KpWEA3 due to ramA overexpression caused by a mutation in ramR; then OmpK36 was lost in KpWEA4-1 and KpWEA4-2 by different mechanisms. KpWEA4-2 further acquired colistin resistance by the deletion of mgrB. In addition, we found that exuR and kdgR, which encode repressors of hexuronate metabolism-related genes, were disrupted in different ways in KpWEA4-1 and KpWEA4-2. The two isolates also possessed different amino acid substitutions in AtpG, which occurred at very close positions. These genetic alterations related to metabolisms may compensate for the deleterious effects of major porin loss. Thus, our present study reveals the evolutionary process of a K. pneumoniae clone leading to MDR and also suggests specific survival strategies in the bacteria that acquired MDR by the genome evolution. IMPORTANCE Within-host evolution is a survival strategy that can occur in many pathogens and is often associated with the emergence of novel antimicrobial-resistant (AMR) bacteria. To analyze this process, suitable sets of clinical isolates are required. Here, we analyzed five Klebsiella pneumoniae isolates which were consecutively isolated from a patient and showed a gradual increase in the AMR level. By genome sequencing and other analyses, we show that the first isolate was the antecedent of the later isolates and that they gained increased levels of antimicrobial resistance leading to multidrug resistance (MDR) by stepwise changes in the expression of outer membrane proteins. The isolates showing higher levels of MDR lost major porins but still colonized the patient's gut, suggesting that the deleterious effects of porin loss were compensated for by the mutations in hexuronate metabolism-related genes and atpG, which were commonly detected in the MDR isolates. | 2021 | 34817239 |
| 5152 | 10 | 0.9886 | High Genomic Identity between Clinical and Environmental Strains of Herbaspirillum frisingense Suggests Pre-Adaptation to Different Hosts and Intrinsic Resistance to Multiple Drugs. The genus Herbaspirillum is widely studied for its ability to associate with grasses and to perform biological nitrogen fixation. However, the bacteria of the Herbaspirillum genus have frequently been isolated from clinical samples. Understanding the genomic characteristics that allow these bacteria to switch environments and become able to colonize human hosts is essential for monitoring emerging pathogens and predicting outbreaks. In this work, we describe the sequencing, assembly, and annotation of the genome of H. frisingense AU14559 isolated from the sputum of patients with cystic fibrosis, and its comparison with the genomes of the uropathogenic strain VT-16-41 and the environmental strains GSF30, BH-1, IAC152, and SG826. The genes responsible for biological nitrogen fixation were absent from all strains except for GSF30. On the other hand, genes encoding virulence and host interaction factors were mostly shared with environmental strains. We also identified a large set of intrinsic antibiotic resistance genes that were shared across all strains. Unlike other strains, in addition to unique genomic islands, AU14559 has a mutation that renders the biosynthesis of rhamnose and its incorporation into the exopolysaccharide unfeasible. These data suggest that H. frisingense has characteristics that provide it with the metabolic diversity needed to infect and colonize human hosts. | 2021 | 34827347 |
| 5492 | 11 | 0.9886 | Uropathogenic bacteria and deductive genomics towards antimicrobial resistance, virulence, and potential drug targets. Urinary tract infections (UTIs) are among the most prevalent bacterial infections affecting people in inpatient and outpatient settings. The current study aimed to sequence the genome of uropathogenic Escherichia coli strain CUI-B1 resourced from a woman having uncomplicated cystitis and pyelonephritis. Followed by deductive genomics towards potential drug targets using E. coli strain CUI-B1, strain O25b: H4-ST131, Proteus mirabilis strain HI4320, Klebsiella pneumoniae strain 1721, and Staphylococcus saprophyticus strain ATCC 15305 uropathogenic strains. Comparative genome analysis revealed that genes related to the survival of E. coli, P. mirabilis, K. pneumoniae, and S. saprophyticus, such as genes of metal-requiring proteins, defense-associated genes, and genes associated with general physiology, were found to be highly conserved in the genomes including strain CUI-B1. However, the genes responsible for virulence and drug resistance, mainly those that are involved in bacterial secretion, fimbriae, adherence, and colonization, were found in various genomic regions and varied from one species to another or within the same species. Based on the genome sequence, virulence, and antimicrobial-resistant gene dataset, the subtractive proteomics approach revealed 22 proteins mapped to the pathogen's unique pathways and among them, entB, clbH, chuV, and ybtS were supposed to be potential drug targets and the single drug could be utilized for all above-mentioned strains. These results may provide the foundation for the optimal target for future discovery of drugs for E. coli-, P. mirabilis-, K. pneumoniae-, and S. saprophyticus-based infections and could be investigated further to employ in personalized drug development. | 2024 | 37553507 |
| 9230 | 12 | 0.9886 | Phage defence loci of Streptococcus thermophilus-tip of the anti-phage iceberg? Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S. thermophilus using a collection of 27 strains as representatives of the species. In addition to CRISPR-Cas and R/M systems, we uncover nine distinct phage-resistance systems including homologues of Kiwa, Gabija, Dodola, defence-associated sirtuins and classical lactococcal/streptococcal abortive infection systems. The genes encoding several of these newly identified S. thermophilus antiphage systems are located in proximity to the genetic determinants of CRISPR-Cas systems thus constituting apparent Phage Defence Islands. Other phage-resistance systems whose encoding genes are not co-located with genes specifying CRISPR-Cas systems may represent anchors to identify additional Defence Islands harbouring, as yet, uncharacterised phage defence systems. We estimate that up to 2.5% of the genetic material of the analysed strains is dedicated to phage defence, highlighting that phage-host antagonism plays an important role in driving the evolution and shaping the composition of dairy streptococcal genomes. | 2024 | 39315705 |
| 5154 | 13 | 0.9886 | Genome analysis and virulence gene expression profile of a multi drug resistant Salmonella enterica serovar Typhimurium ms202. BACKGROUND: In India, multi-drug resistance in Salmonella enterica serovar Typhimurium poses a significant health threat. Indeed, S. Typhimurium has remained unknown for a large portion of its genome associated with various physiological functions including mechanism of drug resistance and virulence. The whole-genome sequence of a Salmonella strain obtained from feces of a patient with gastroenteritis in Odisha, India, was analyzed for understanding the disease association and underlying virulence mechanisms. RESULTS: The de novo assembly yielded 17 contigs and showed 99.9% similarity to S. enterica sub sp enterica strain LT2 and S. enteric subsp salamae strain DSM 9220. S. Typhimurium ms202 strain constitutes six known Salmonella pathogenicity islands and nine different phages. The comparative interpretation of pathogenic islands displayed the genes contained in SPI-1 and SPI-2 to be highly conserved. We identified sit ABCD cluster regulatory cascade in SPI-1. Multiple antimicrobial resistance genes were identified that directly implies antibiotic-resistant phenotype. Notably, seven unique genes were identified as "acquired antibiotic resistance". These data suggest that virulence in S. enterica Typhimurium ms202 is associated with SPI-1 and SPI-2. Further, we found several virulent genes encoding SPI regions belonging to type III secretion systems (T3SS) of bacteria were significantly upregulated in ms202 compared to control LT2. Moreover, all these genes were significantly downregulated in S. enterica Typhimurium ms202 as compared to control LT2 on adding Mn(2+) exogenously. CONCLUSIONS: Our study raises a vital concern about the potential diffusion of a novel multi-drug resistant S. enterica Typhimurium ms202. It justifies this clinical pathogen to demonstrate a higher degree survival due to higher expression of virulent genes and enhanced ability of metallic ion acquisition. | 2022 | 35765034 |
| 8377 | 14 | 0.9886 | Genome-Wide Association Analyses in the Model Rhizobium Ensifer meliloti. Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association.IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti, an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations. | 2018 | 30355664 |
| 9603 | 15 | 0.9886 | Resistance signatures manifested in early drug response across cancer types and species. Aim: Growing evidence points to non-genetic mechanisms underlying long-term resistance to cancer therapies. These mechanisms involve pre-existing or therapy-induced transcriptional cell states that confer resistance. However, the relationship between early transcriptional responses to treatment and the eventual emergence of resistant states remains poorly understood. Furthermore, it is unclear whether such early resistance-associated transcriptional responses are evolutionarily conserved. In this study, we examine the similarity between early transcriptional responses and long-term resistant states, assess their clinical relevance, and explore their evolutionary conservation across species. Methods: We integrated datasets on early drug responses and long-term resistance from multiple cancer cell lines, bacteria, and yeast to identify early transcriptional changes predictive of long-term resistance and assess their evolutionary conservation. Using genome-wide CRISPR-Cas9 knockout screens, we evaluated the impact of genes associated with resistant transcriptional states on drug sensitivity. Clinical datasets were analyzed to explore the prognostic value of the identified resistance-associated gene signatures. Results: We found that transcriptional states observed in drug-naive cells and shortly after treatment overlapped with those seen in fully resistant populations. Some of these shared features appear to be evolutionarily conserved. Knockout of genes marking resistant states sensitized ovarian cancer cells to Prexasertib. Moreover, early resistance gene signatures effectively distinguished therapy responders from non-responders in multiple clinical cancer trials and differentiated premalignant breast lesions that progressed to malignancy from those that remained benign. Conclusion: Early cellular transcriptional responses to therapy exhibit key similarities to fully resistant states across different drugs, cancer types, and species. Gene signatures defining these early resistance states have prognostic value in clinical settings. | 2025 | 41019980 |
| 8378 | 16 | 0.9886 | Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BACKGROUND: Antibiotic resistance in bacteria spreads quickly, overtaking the pace at which new compounds are discovered and this emphasizes the immediate need to discover new compounds for control of infectious diseases. Terrestrial bacteria have for decades been investigated as a source of bioactive compounds leading to successful applications in pharmaceutical and biotech industries. Marine bacteria have so far not been exploited to the same extent; however, they are believed to harbor a multitude of novel bioactive chemistry. To explore this potential, genomes of 21 marine Alpha- and Gammaproteobacteria collected during the Galathea 3 expedition were sequenced and mined for natural product encoding gene clusters. RESULTS: Independently of genome size, bacteria of all tested genera carried a large number of clusters encoding different potential bioactivities, especially within the Vibrionaceae and Pseudoalteromonadaceae families. A very high potential was identified in pigmented pseudoalteromonads with up to 20 clusters in a single strain, mostly NRPSs and NRPS-PKS hybrids. Furthermore, regulatory elements in bioactivity-related pathways including chitin metabolism, quorum sensing and iron scavenging systems were investigated both in silico and in vitro. Genes with siderophore function were identified in 50% of the strains, however, all but one harboured the ferric-uptake-regulator gene. Genes encoding the syntethase of acylated homoserine lactones were found in Roseobacter-clade bacteria, but not in the Vibrionaceae strains and only in one Pseudoalteromonas strains. The understanding and manipulation of these elements can help in the discovery and production of new compounds never identified under regular laboratory cultivation conditions. High chitinolytic potential was demonstrated and verified for Vibrio and Pseudoalteromonas species that commonly live in close association with eukaryotic organisms in the environment. Chitin regulation by the ChiS histidine-kinase seems to be a general trait of the Vibrionaceae family, however it is absent in the Pseudomonadaceae. Hence, the degree to which chitin influences secondary metabolism in marine bacteria is not known. CONCLUSIONS: Utilizing the rapidly developing sequencing technologies and software tools in combination with phenotypic in vitro assays, we demonstrated the high bioactive potential of marine bacteria in an efficient, straightforward manner - an approach that will facilitate natural product discovery in the future. | 2015 | 25879706 |
| 6162 | 17 | 0.9886 | The resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17. Yersinia pestis, the causative agent of plague, has been well studied at the molecular and genetic levels, but little is known about the role that host genes play in combating this highly lethal pathogen. We challenged several inbred strains of mice with Y. pestis and found that BALB/cJ mice are highly resistant compared to susceptible strains such as C57BL/6J. This resistance was observed only in BALB/cJ mice and not in other BALB/c substrains. Compared to C57BL/6J mice, the BALB/cJ strain exhibited reduced bacterial burden in the spleen and liver early after infection as well as lower levels of serum interleukin-6. These differences were evident 24 h postinfection and became more pronounced with time. Although a significant influx of neutrophils in the spleen and liver was exhibited in both strains, occlusive fibrinous thrombi resulting in necrosis of the surrounding tissue was observed only in C57BL/6J mice. In an effort to identify the gene(s) responsible for resistance, we measured total splenic bacteria in 95 F(2) mice 48 h postinfection and performed quantitative trait locus mapping using 58 microsatellite markers spaced throughout the genome. This analysis revealed a single nonrecessive plague resistance locus, designated prl1 (plague resistance locus 1), which coincides with the major histocompatibility complex of chromosome 17. A second screen of 95 backcrossed mice verified that this locus confers resistance to Y. pestis early in infection. Finally, eighth generation backcrossed mice harboring prl1 were found to maintain resistance in the susceptible C57BL/6J background. These results identify a novel genetic locus in BALB/cJ mice that confers resistance to Y. pestis. | 2008 | 18573896 |
| 6196 | 18 | 0.9885 | New insights into the regulatory pathways associated with the activation of the stringent response in bacterial resistance to the PBP2-targeted antibiotics, mecillinam and OP0595/RG6080. OBJECTIVES: The diazabicyclooctane β-lactamase inhibitor OP0595 (RG6080) also acts as an antibiotic, targeting PBP2 in Enterobacteriaceae, but this activity is vulnerable to mutational resistance. We used WGS to investigate the basis of this resistance. METHODS: Twenty OP0595-selected mutants, comprising four derived from each of five different Escherichia coli strains, were sequenced on Illumina HiSeq. Reads from each mutant were mapped to the assembled genome of the corresponding parent. A variant-calling file generated with Samtools was parsed to determine genetic alterations. RESULTS: Besides OP0595, the mutants consistently showed decreased susceptibility to mecillinam, which likewise targets PBP2, and grew as stable round forms in the presence of subinhibitory concentrations of OP0595. Among the 20 mutants, 18 had alterations in genes encoding tRNA synthase and modification functions liable to induce expression of the RpoS sigma factor through activation of the stringent response or had mutations suppressing inactivators of RpoS or the stringent response signal-degrading enzyme, SpoT. TolB was inactivated in one mutant: this activates RcsBC regulation and was previously associated with mecillinam resistance. The mechanism of resistance remained unidentified in one mutant. Both the RpoS and RcsBC systems regulate genes of cell division, including ftsAQZ that can compensate for loss or inhibition of PBP2, allowing survival of the challenged bacteria as stable round forms, as seen. CONCLUSIONS: WGS identified the global stringent response signal, entailing induction of RpoS, as the main mediator of mutational resistance to OP0595 in E. coli. | 2016 | 27330062 |
| 4348 | 19 | 0.9885 | Prophage-Mediated Disruption of Genetic Competence in Staphylococcus pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of soft tissue infections in dogs and occasionally infects humans. Hypervirulent multidrug-resistant (MDR) MRSP clones have emerged globally. The sequence types ST71 and ST68, the major epidemic clones of Europe and North America, respectively, have spread to other regions. The genetic factors underlying the success of these clones have not been investigated thoroughly. Here, we performed a comprehensive genomic analysis of 371 S. pseudintermedius isolates to dissect the differences between major clonal lineages. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, restriction-modification (RM), and CRISPR/Cas systems differs significantly among MRSP clones. The isolates with GyrA+GrlA mutations, conferring fluoroquinolone resistance, carry more of these genes than those without GyrA+GrlA mutations. ST71 and ST68 clones carry lineage-specific prophages with genes that are likely associated with their increased fitness and virulence. We have discovered that a prophage, SpST71A, is inserted within the comGA gene of the late competence operon comG in the ST71 lineage. A functional comG is essential for natural genetic competence, which is one of the major modes of horizontal gene transfer (HGT) in bacteria. The RM and CRISPR/Cas systems, both major genetic barriers to HGT, are also lineage specific. Clones harboring CRISPR/Cas or a prophage-disrupted comG exhibited less genetic diversity and lower rates of recombination than clones lacking these systems. After Listeria monocytogenes, this is the second example of prophage-mediated competence disruption reported in any bacteria. These findings are important for understanding the evolution and clonal expansion of MDR MRSP clones.IMPORTANCE Staphylococcus pseudintermedius is a bacterium responsible for clinically important infections in dogs and can infect humans. In this study, we performed genomic analysis of 371 S. pseudintermedius isolates to understand the evolution of antibiotic resistance and virulence in this organism. The analysis covered significant reported clones, including ST71 and ST68, the major epidemic clones of Europe and North America, respectively. We show that the prevalence of genes associated with antibiotic resistance, virulence, prophages, and horizontal gene transfer differs among clones. ST71 and ST68 carry prophages with novel virulence and antibiotic resistance genes. Importantly, site-specific integration of a prophage, SpST71A, has led to the disruption of the genetic competence operon comG in ST71 clone. A functional comG is essential for the natural uptake of foreign DNA and thus plays an important role in the evolution of bacteria. This study provides insight into the emergence and evolution of antibiotic resistance and virulence in S. pseudintermedius, which may help in efforts to combat this pathogen. | 2020 | 32071159 |