# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3069 | 0 | 0.9937 | The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments. | 2025 | 40483807 |
| 8723 | 1 | 0.9925 | Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes. Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC(50) = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field. | 2022 | 35814684 |
| 3065 | 2 | 0.9923 | Species diversity, virulence, and antimicrobial resistance of the nasal staphylococcal and mammaliicoccal biota of reindeer. BACKGROUND: Staphylococcus (S.) spp. and Mammaliicoccus (M.) spp., in addition to their established role as components of the human and animal microbiota, can also cause opportunistic infections. This study aimed to characterize bacteria recovered from nasal cavities of healthy adult reindeer from two farms located in Poland (15 reindeer) and Germany (15 reindeer). The research include bacteria isolation, species identification, detection of selected superantigen (SAg) genes, assessment of biofilm-forming capability in vitro, and evaluation of antimicrobial resistance. RESULTS: Seventy-four staphylococci and mammaliicocci from 14 different species were isolated from 30 nasal swabs, with one to four strains obtained from each reindeer. The most frequently identified species was S. equorum, followed by S. succinus, M. sciuri, S. xylosus, M. lentus, S. chromogenes, S. devriesei, M. vitulinus, S. auricularis, S. agnetis, S. edaphicus, S. petrasii, S. simulans, and S. warneri. A greater species diversity was observed among the reindeer from Poland compared to those from Germany. All isolated bacteria were coagulase negative and clumping factor negative and did not carry any of the 21 analyzed SAg genes. M. sciuri demonstrated the highest antimicrobial resistance (100%), followed by S. succinus (91%) and S. equorum (78%). Resistance to rifampicin was the most common (30% strains). Sixteen strains (22%) exhibited biofilm production at least 10% greater than the strong biofilm-forming S. aureus ATCC 6538. CONCLUSIONS: This study reveals a significant knowledge gap regarding the nasal microbiota of reindeer. It contributes to our understanding of staphylococcal and mammaliicoccal biota of reindeer and underscores the necessity for monitoring of microbial populations to assess their health implications for both animals and humans, particularly concerning the zoonotic transmission of bacteria. | 2025 | 40452044 |
| 3070 | 3 | 0.9922 | Analysis of Antibiotic Resistance Genes in Water Reservoirs and Related Wastewater from Animal Farms in Central China. This study aimed to explore the phenotype and relationship of drug resistance genes in livestock and poultry farm wastewater and drinking water reservoirs to provide evidence for the transmission mechanisms of drug resistance genes, in order to reveal the spread of drug resistance genes in wastewater from intensive farms in Central China to urban reservoirs that serve as drinking water sources and provide preliminary data for the treatment of wastewater from animal farms to reduce the threat to human beings. DNA extraction and metagenomic sequencing were performed on eight groups of samples collected from four water reservoirs and four related wastewaters from animal farms in Central China. Metagenomic sequencing showed that the top 20 AROs with the highest abundance were vanT_gene, vanY_gene, adeF, qacG, Mtub_rpsL_STR, vanY_gene_, vanW_gene, Mtub_murA_FOF, vanY_gene, vanH_gene, FosG, rsmA, qacJ, RbpA, vanW_gene, aadA6, vanY_gene, sul4, sul1, and InuF. The resistance genes mentioned above belong to the following categories of drug resistance mechanisms: antibiotic target replacement, antibiotic target protection, antibiotic inactivation, and antibiotic efflux. The resistomes that match the top 20 genes are Streptococcus agalactiae and Streptococcus anginosus; Enterococcus faecalis; Enterococcus faecium; Actinomyces viscosus and Bacillus cereus. Enterococcus faecium; Clostridium tetani; Streptococcus agalactiae and Streptococcus anginosus; Streptococcus agalactiae and Streptococcus anginosus; Acinetobacter baumannii, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, Corynebacterium jeikeium, Corynebacterium urealyticum, Mycobacterium kansasii, Mycobacterium tuberculosis, Schaalia odontolytica, and Trueperella pyogenes; Mycobacterium avium and Mycobacterium tuberculosis; Aeromonas caviae, Enterobacter hormaechei, Vibrio cholerae, Vibrio metoecus, Vibrio parahaemolyticus, and Vibrio vulnificus; Pseudomonas aeruginosa and Pseudomonas fluorescens; Staphylococcus aureus and Staphylococcus equorum; M. avium, Achromobacter xylosoxidans, and Acinetobacter baumannii; Sphingobium yanoikuyae, Acinetobacter indicus, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, and Providencia stuartii. Unreported drug resistance genes and drug-resistant bacteria in Central China were identified in 2023. In the transmission path of drug resistance genes, the transmission path from aquaculture wastewater to human drinking water sources cannot be ignored. For the sake of human health and ecological balance, the treatment of aquaculture wastewater needs to be further strengthened, and the effective blocking of drug resistance gene transmission needs to be considered. | 2024 | 38399800 |
| 5825 | 4 | 0.9922 | Polymerase Chain Reaction (PCR) Profiling of Extensively Drug-Resistant (XDR) Pathogenic Bacteria in Pulmonary Tuberculosis Patients. Introduction Pulmonary tuberculosis (TB) remains a global health concern, exacerbated by the emergence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. This study employs advanced molecular techniques, specifically polymerase chain reaction (PCR) profiling, to comprehensively characterize the genetic landscape of XDR pathogenic bacteria in patients diagnosed with pulmonary TB. The objective of the study is to elucidate the genes that are associated with drug resistance in pulmonary TB strains through the application of PCR and analyze specific genetic loci that contribute to the development of resistance against multiple drugs. Materials and methods A total of 116 clinical samples suspected of TB were collected from the tertiary healthcare setting of Saveetha Medical College and Hospitals for the identification of MTB, which includes sputum (n = 35), nasal swabs (n = 17), blood (n = 44), and bronchoalveolar lavage (BAL) (n = 20). The collected specimens were processed and subjected to DNA extraction. As per the protocol, reconstitution of the DNA pellet was carried out. The reconstituted DNA was stored at -20 °C for the PCR assay. From the obtained positive sample specimens, XDR pulmonary TB specimens were focused on the targeted genes, specifically the rpoB gene for rifampicin resistance, inhA, and katG gene for thepromoter region for isoniazid resistance. Results Out of a total of 116 samples obtained, 53 tested positive for pulmonary TB, indicative of a mycobacterial infection. Among these positive cases, 43 patients underwent treatment at a tertiary healthcare facility. Subsequently, a PCR assay was performed with the extracted DNA for the target genes rpoB, inhA, and katG. Specifically, 22 sputum samples exhibited gene expression for rpoB, inhA, and katG, while nine nasal swabs showed expression of the rpoB and inhA genes. Additionally, rpoB gene expression was detected in seven blood specimens, and both rpoB and inhA genes were expressed in five BAL samples. Conclusion The swift diagnosis and efficient treatment of XDR-TB can be facilitated by employing advanced and rapid molecular tests and oral medication regimens. Utilizing both newly developed and repurposed anti-TB drugs like pretomanid, bedaquiline, linezolid, and ethionamide. Adhering to these current recommendations holds promise for managing XDR-TB effectively. Nevertheless, it is significant to conduct well-designed clinical trials and studies to further evaluate the efficacy of new agents and shorter treatment regimens, thus ensuring continuous improvement in the management of this challenging condition. | 2024 | 38953074 |
| 4761 | 5 | 0.9922 | Antimicrobial resistance and biofilm formation of penile prosthesis isolates: insights from in-vitro analysis. BACKGROUND: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance. AIM: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model. METHODS: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader. OUTCOMES: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum. RESULTS: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy. STRENGTHS AND LIMITATIONS: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery. CLINICAL TRANSLATION: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur. CONCLUSIONS: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected. | 2025 | 40062463 |
| 5169 | 6 | 0.9921 | Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones. | 2023 | 36475849 |
| 7130 | 7 | 0.9921 | Microbial community structure and resistome dynamics on elevator buttons in response to surface disinfection practices. BACKGROUND: Disinfectants have been extensively used in public environments since the COVID-19 outbreak to help control the spread of the virus. This study aims to investigate whether disinfectant use influences the structure of bacterial communities and contributes to bacterial resistance to disinfectants and antibiotics. METHODS: Using molecular biology techniques-including metagenomic sequencing and quantitative PCR (qPCR)-we analyzed the bacterial communities on elevator button surfaces from two tertiary hospitals, one infectious disease hospital, two quarantine hotels (designated for COVID-19 control), and five general hotels in Nanjing, Jiangsu Province, during the COVID-19 pandemic. We focused on detecting disinfectant resistance genes (DRGs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). RESULTS: Significant differences were observed in the bacterial community structures on elevator button surfaces across the four types of environments. Quarantine hotels, which implemented the most frequent disinfection protocols, exhibited distinct bacterial profiles at the phylum, genus, and species levels. Both α-diversity (within-sample diversity) and β-diversity (between-sample diversity) were lower and more distinct in quarantine hotels compared to the other environments. The abundance of DRGs, ARGs, and MGEs was also significantly higher on elevator button surfaces in quarantine hotels. Notably, antibiotic-resistant bacteria (ARBs), including Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, were detected in all four settings. CONCLUSION: The structure of bacterial communities on elevator button surfaces varies across different environments, likely influenced by the frequency of disinfectant use. Increased resistance gene abundance in quarantine hotels suggests that disinfection practices may contribute to the selection and spread of resistant bacteria. Enhanced monitoring of disinfection effectiveness and refinement of protocols in high-risk environments such as hospitals and hotels are essential to limit the spread of resistant pathogens. | 2025 | 40520307 |
| 2542 | 8 | 0.9921 | Bacterial colonization and antimicrobial resistance genes in neonatal enteral feeding tubes. Enteral feeding is a key component of care in neonatal intensive care units (NICUs); however, feeding tubes harbor microbes. These microbes have the potential to cause disease, yet their source remains controversial and clinical recommendations to reduce feeding tube colonization are lacking. This study aims to improve our understanding of the bacteria in neonatal feeding tubes and to evaluate factors that may affect these bacteria. 16S rRNA gene sequencing was used to characterize the bacteria present in pharyngeal, esophageal, and gastric portions of feeding tubes, residual fluid of the tubes, and infant stool using samples from 47 infants. Similar distributions of taxa were observed in all samples, although beta diversity differed by sample type. Feeding tube samples had lower alpha diversity than stool samples, and alpha diversity increased with gestational age, day of life, and tube dwell time. In a subset of samples from 6 infants analyzed by whole metagenome sequencing, there was greater overlap in transferable antimicrobial resistance genes between tube and fecal samples in breast milk fed infants than in formula fed infants. These findings develop our understanding of neonatal feeding tube colonization, laying a foundation for research into methods for minimizing NICU patients' exposure to antimicrobial resistant microbes. | 2019 | 30915455 |
| 2550 | 9 | 0.9921 | Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD. | 2017 | 28803549 |
| 2368 | 10 | 0.9921 | Smelly shark, smelly ray: what is infecting you? AIMS: Although elasmobranchs are consumed worldwide, bacteriological assessments for this group are still sorely lacking. In this context, this study assessed bacteria of sharks and rays from one of the most important landing ports along the Rio de Janeiro coast. METHODS AND RESULTS: Bacteria were isolated from the cloacal swabs of the sampled elasmobranchs. They were cultured, and Vibrio, Aeromonas, and Enterobacterales were isolated and identified. The isolated bacteria were then biochemically identified and antimicrobial susceptibility assays were performed. Antigenic characterizations were performed for Salmonella spp. and Polymerase Chain Reaction (PCR) assays were performed to identify Escherichia coli pathotypes. Several bacteria of interest in the One Health context were detected. The most prevalent Enterobacterales were Morganella morganii and Citrobacter freundii, while Vibrio harveyi and Vibrio fluvialis were the most prevalent among Vibrio spp. and Aeromonas allosacharophila and Aeromonas veronii bv. veronii were the most frequent among Aeromonas spp. Several bacteria also displayed antimicrobial resistance, indicative of Public Health concerns. A total of 10% of Vibrio strains were resistant to trimethoprim-sulfamethoxazole and 40% displayed intermediate resistance to cefoxitin. Salmonella enterica strains displayed intermediate resistance to ciprofloxacin, nalidixic acid and streptomycin. All V. cholerae strains were identified as non-O1/non-O139. The detected E. coli strains did not exhibit pathogenicity genes. This is the first study to perform serology assessments for S. enterica subsp. enterica isolated from elasmobranchs, identifying the zoonotic Typhimurium serovar. Salmonella serology evaluations are, therefore, paramount to identify the importance of elasmobranchs in the epidemiological salmonellosis chain. CONCLUSIONS: The detection of several pathogenic and antibiotic-resistant bacteria may pose significant Public Health risks in Brazil, due to high elasmobranch consumption rates, indicating the urgent need for further bacteriological assessments in this group. | 2024 | 38486350 |
| 2545 | 11 | 0.9921 | Environmental bacterial load during surgical and ultrasound procedures in a Swedish small animal hospital. BACKGROUND: Environmental bacteria in animal healthcare facilities may constitute a risk for healthcare-associated infections (HAI). Knowledge of the bacterial microflora composition and factors influencing the environmental bacterial load can support tailored interventions to lower the risk for HAI. The aims of this study were to: (1) quantify and identify environmental bacteria in one operating room (OR) and one ultrasound room (UR) in a small animal hospital, (2) compare the bacterial load to threshold values suggested for use in human healthcare facilities, (3) characterise the genetic relationship between selected bacterial species to assess clonal dissemination, and (4) investigate factors associated with bacterial load during surgery. Settle plates were used for passive air sampling and dip slides for surface sampling. Bacteria were identified by Matrix Assisted Laser Desorption-Time Of Flight. Antimicrobial susceptibility was determined by broth microdilution. Single nucleotide polymorphism-analysis was performed to identify genetically related isolates. Linear regression was performed to analyse associations between observed explanatory factors and bacterial load. RESULTS: The bacterial load on settle plates and dip slides were low both in the OR and the UR, most of the samples were below threshold values suggested for use in human healthcare facilities. All settle plates sampled during surgery were below the threshold values suggested for use in human clean surgical procedures. Staphylococcus spp. and Micrococcus spp. were the dominating species. There was no indication of clonal relationship among the sequenced isolates. Bacteria carrying genes conveying resistance to disinfectants were revealed. Air change and compliance with hygiene routines were sufficient in the OR. No other factors possibly associated with the bacterial load were identified. CONCLUSIONS: This study presents a generally low bacterial load in the studied OR and UR, indicating a low risk of transmission of infectious agents from the clinical environment. The results show that it is possible to achieve bacterial loads below threshold values suggested for use in human healthcare facilities in ORs in small animal hospitals and thus posing a reduced risk of HAI. Bacteria carrying genes conveying resistance to disinfectants indicates that resistant bacteria can persist in the clinical environment, with increased risk for HAI. | 2024 | 39223628 |
| 2541 | 12 | 0.9921 | Increased antibiotic resistance in preterm neonates under early antibiotic use. The standard use of antibiotics in newborns to empirically treat early-onset sepsis can adversely affect the neonatal gut microbiome, with potential long-term health impacts. Research into the escalating issue of antimicrobial resistance in preterm infants and antibiotic practices in neonatal intensive care units is limited. A deeper understanding of the effects of early antibiotic intervention on antibiotic resistance in preterm infants is crucial. This retrospective study employed metagenomic sequencing to evaluate antibiotic resistance genes (ARGs) in the meconium and subsequent stool samples of preterm infants enrolled in the Routine Early Antibiotic Use in Symptomatic Preterm Neonates study. Microbial metagenomics was conducted using a subset of fecal samples from 30 preterm infants for taxonomic profiling and ARG identification. All preterm infants exhibited ARGs, with 175 unique ARGs identified, predominantly associated with beta-lactam, tetracycline, and aminoglycoside resistance. Notably, 23% of ARGs was found in preterm infants without direct or intrapartum antibiotic exposure. Post-natal antibiotic exposure increases beta-lactam/tetracycline resistance while altering mechanisms that aid bacteria in withstanding antibiotic pressure. Microbial profiling revealed 774 bacterial species, with antibiotic-naive infants showing higher alpha diversity (P = 0.005) in their microbiota and resistome compared with treated infants, suggesting a more complex ecosystem. High ARG prevalence in preterm infants was observed irrespective of direct antibiotic exposure and intensifies with age. Prolonged membrane ruptures and maternal antibiotic use during gestation and delivery are linked to alterations in the preterm infant resistome and microbiome, which are pivotal in shaping the ARG profiles in the neonatal gut.This study is registered with ClinicalTrials.gov as NCT02784821. IMPORTANCE: A high burden of antibiotic resistance in preterm infants poses significant challenges to neonatal health. The presence of antibiotic resistance genes, along with alterations in signaling, energy production, and metabolic mechanisms, complicates treatment strategies for preterm infants, heightening the risk of ineffective therapy and exacerbating outcomes for these vulnerable neonates. Despite not receiving direct antibiotic treatment, preterm infants exhibit a concerning prevalence of antibiotic-resistant bacteria. This underscores the complex interplay of broader influences, including maternal antibiotic exposure during and beyond pregnancy and gestational complications like prolonged membrane ruptures. Urgent action, including cautious antibiotic practices and enhanced antenatal care, is imperative to protect neonatal health and counter the escalating threat of antimicrobial resistance in this vulnerable population. | 2024 | 39373498 |
| 5811 | 13 | 0.9920 | Antimicrobial susceptibility testing and tentative epidemiological cut-off values for Lactobacillaceae family species intended for ingestion. INTRODUCTION: In this work, 170 strains covering 13 species from the Lactobacillaceae family were analyzed to determine minimal inhibitory concentration (MIC) distributions to nine antimicrobial agents, and genes potentially conferring resistance. This allows a proposal of tentative Epidemiological Cut-Offs (ECOFFs) that follows the phylogeny for interpretation of resistance in the 13 species. METHODS: The 170 strains originated from different sources, geographical areas, and time periods. MICs for nine antibiotics were determined according to the ISO 10932 standard for lactobacillia and by a modified CLSI-method for Leuconostoc and Pediococcus which ensured sufficient growth. The strains were whole genome sequenced, subtyped by core genome analysis, and assessed for the presence of antibiotic resistance genes using the ResFinder and NCBI AMRFinder databases. RESULTS AND DISCUSSION: The data provide evidence that antimicrobial susceptibility follows phylogeny instead of fermentation pattern and accordingly, tentative ECOFFs were defined. For some species the tentative ECOFFs for specific antibiotics are above the cut-off values set by the European Food Safety Authority (EFSA) which are primarily defined according to fermentation pattern or at genus level. The increased tolerance for specific antibiotics observed for some species was evaluated to be innate, as only for one strain phenotypic resistance was found to be related to an acquired resistance gene. In general, more data are needed to define ECOFFs and since the number of isolates available for industrial relevant bacterial species are often limited compared to clinically relevant species, it is important; 1) that strains are unambiguously defined at species level and subtyped through core genome analysis, 2) MIC determination are performed by use of a standardized method to define species-specific MIC distributions and 3) that known antimicrobial resistance genes are determined in whole genome sequences to support the MIC determinations. | 2023 | 39816654 |
| 5803 | 14 | 0.9920 | Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. INTRODUCTION: The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. METHODS: Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (β-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. RESULTS: 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. DISCUSSION: We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures. | 2018 | 30271606 |
| 2596 | 15 | 0.9920 | 16S rRNA amplicon sequencing and antimicrobial resistance profile of intensive care units environment in 41 Brazilian hospitals. INTRODUCTION: Infections acquired during healthcare setting stay pose significant public health threats. These infections are known as Healthcare-Associated Infections (HAI), mostly caused by pathogenic bacteria, which exhibit a wide range of antimicrobial resistance. Currently, there is no knowledge about the global cleaning process of hospitals and the bacterial diversity found in ICUs of Brazilian hospitals contributing to HAI. OBJECTIVE: Characterize the microbiome and common antimicrobial resistance genes present in high-touch Intensive Care Unit (ICU) surfaces, and to identify the potential contamination of the sanitizers/processes used to clean hospital surfaces. METHODS: In this national, multicenter, observational, and prospective cohort, bacterial profiles and several antimicrobial resistance genes from 41 hospitals across 16 Brazilian states were evaluated. Using high-throughput 16S rRNA amplicon sequencing and real-time PCR, the bacterial abundance and resistance genes presence were analyzed in both ICU environments and cleaning products. RESULTS: We identified a wide diversity of microbial populations with a recurring presence of HAI-related bacteria among most of the hospitals. The median bacterial positivity rate in surface samples was high (88.24%), varying from 21.62 to 100% in different hospitals. Hospitals with the highest bacterial load in samples were also the ones with highest HAI-related abundances. Streptococcus spp., Corynebacterium spp., Staphylococcus spp., Bacillus spp., Acinetobacter spp., and bacteria from the Flavobacteriaceae family were the microorganisms most found across all hospitals. Despite each hospital particularities in bacterial composition, clustering profiles were found for surfaces and locations in the ICU. Antimicrobial resistance genes mecA, bla (KPC-like), bla (NDM-like), and bla (OXA-23-like) were the most frequently detected in surface samples. A wide variety of sanitizers were collected, with 19 different active principles in-use, and 21% of the solutions collected showed viable bacterial growth with antimicrobial resistance genes detected. CONCLUSION: This study demonstrated a diverse and spread pattern of bacteria and antimicrobial resistance genes covering a large part of the national territory in ICU surface samples and in sanitizers solutions. This data should contribute to the adoption of surveillance programs to improve HAI control strategies and demonstrate that large-scale epidemiology studies must be performed to further understand the implications of bacterial contamination in hospital surfaces and sanitizer solutions. | 2024 | 39076419 |
| 2272 | 16 | 0.9919 | Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention. | 2021 | 34537275 |
| 3066 | 17 | 0.9919 | Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures. | 2021 | 34061267 |
| 5164 | 18 | 0.9919 | Genome sequencing analysis of the pncA, rpsA and panD genes responsible for pyrazinamide resistance of Mycobacterium tuberculosis from Indonesian isolates. BACKGROUND: Developing the most suitable treatment against tuberculosis based on resistance profiles is imperative to effectively cure tuberculosis patients. Whole-genome sequencing is a molecular method that allows for the rapid and cost-effective detection of mutations in multiple genes associated with anti-tuberculosis drug resistance. This sequencing approach addresses the limitations of culture-based methods, which may not apply to certain anti-TB drugs, such as pyrazinamide, because of their specific culture medium requirements, potentially leading to biased resistance culture results. METHODS: Thirty-four M. tuberculosis isolates were subcultured on a Lowenstein-Jensen medium. The genome of these bacteria was subsequently isolated using cetyltrimethylammonium bromide. Genome sequencing was performed with Novaseq Illumina 6000 (Illumina), and the data were analysed using the GenTB and Mykrobe applications. We also conducted a de novo analysis to compare the two methods and performed mutation analysis of other genes encoding pyrazinamide resistance, namely rpsA and panD. RESULTS: The results revealed mutations in the pncA gene, which were identified based on the databases accessed through GenTB and Mykrobe. Two discrepancies between the drug susceptibility testing and sequencing results may suggest potential instability in the drug susceptibility testing culture, specifically concerning PZA. Meanwhile, the results of the de novo analysis showed the same result of pncA mutation to the GenTB or Mykrobe; meanwhile, there were silent mutations in rpsA in several isolates and a point mutation; no mutations were found in the panD gene. However, the mutations in the genes encoding pyrazinamide require further and in-depth study to understand their relationship to the phenotypic profile. CONCLUSIONS: Compared to the conventional culture method, the whole-genome sequencing method has advantages in determining anti-tuberculosis resistance profiles, especially in reduced time and bias. | 2024 | 39397216 |
| 3157 | 19 | 0.9919 | Reservoirs of antimicrobial resistance genes in retail raw milk. BACKGROUND: It has been estimated that at least 3% of the USA population consumes unpasteurized (raw) milk from animal sources, and the demand to legalize raw milk sales continues to increase. However, consumption of raw milk can cause foodborne illness and be a source of bacteria containing transferrable antimicrobial resistance genes (ARGs). To obtain a comprehensive understanding of the microbiome and antibiotic resistome in both raw and processed milk, we systematically analyzed 2034 retail milk samples including unpasteurized milk and pasteurized milk via vat pasteurization, high-temperature-short-time pasteurization, and ultra-pasteurization from the United States using complementary culture-based, 16S rRNA gene, and metagenomic sequencing techniques. RESULTS: Raw milk samples had the highest prevalence of viable bacteria which were measured as all aerobic bacteria, coliform, and Escherichia coli counts, and their microbiota was distinct from other types of milk. 16S rRNA gene sequencing revealed that Pseudomonadaceae dominated raw milk with limited levels of lactic acid bacteria. Among all milk samples, the microbiota remained stable with constant bacterial populations when stored at 4 °C. In contrast, storage at room temperature dramatically enriched the bacterial populations present in raw milk samples and, in parallel, significantly increased the richness and abundance of ARGs. Metagenomic sequencing indicated raw milk possessed dramatically more ARGs than pasteurized milk, and a conjugation assay documented the active transfer of bla(CMY-2), one ceftazidime resistance gene present in raw milk-borne E. coli, across bacterial species. The room temperature-enriched resistome differed in raw milk from distinct geographic locations, a difference likely associated with regionally distinct milk microbiota. CONCLUSION: Despite advertised "probiotic" effects, our results indicate that raw milk microbiota has minimal lactic acid bacteria. In addition, retail raw milk serves as a reservoir of ARGs, populations of which are readily amplified by spontaneous fermentation. There is an increased need to understand potential food safety risks from improper transportation and storage of raw milk with regard to ARGs. Video Abstract. | 2020 | 32591006 |