# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1493 | 0 | 0.9623 | Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. OBJECTIVES: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection. | 2023 | 37714378 |
| 1528 | 1 | 0.9597 | First Report of Coexistence of bla (SFO-1) and bla (NDM-1) β-Lactamase Genes as Well as Colistin Resistance Gene mcr-9 in a Transferrable Plasmid of a Clinical Isolate of Enterobacter hormaechei. Many antimicrobial resistance genes usually located on transferable plasmids are responsible for multiple antimicrobial resistance among multidrug-resistant (MDR) Gram-negative bacteria. The aim of this study is to characterize a carbapenemase-producing Enterobacter hormaechei 1575 isolate from the blood sample in a tertiary hospital in Wuhan, Hubei Province, China. Antimicrobial susceptibility test showed that 1575 was an MDR isolate. The whole genome sequencing (WGS) and comparative genomics were used to deeply analyze the molecular information of the 1575 and to explore the location and structure of antibiotic resistance genes. The three key resistance genes (bla (SFO-1), bla (NDM-1), and mcr-9) were verified by PCR, and the amplicons were subsequently sequenced. Moreover, the conjugation assay was also performed to determine the transferability of those resistance genes. Plasmid files were determined by the S1 nuclease pulsed-field gel electrophoresis (S1-PFGE). WGS revealed that p1575-1 plasmid was a conjugative plasmid that possessed the rare coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 genes and complete conjugative systems. And p1575-1 belonged to the plasmid incompatibility group IncHI2 and multilocus sequence typing ST102. Meanwhile, the pMLST type of p1575-1 was IncHI2-ST1. Conjugation assay proved that the MDR p1575-1 plasmid could be transferred to other recipients. S1-PFGE confirmed the location of plasmid with molecular weight of 342,447 bp. All these three resistant genes were flanked by various mobile elements, indicating that the bla (SFO-1), bla (NDM-1), and mcr-9 could be transferred not only by the p1575-1 plasmid but also by these mobile elements. Taken together, we report for the first time the coexistence of bla (SFO-1), bla (NDM-1), and mcr-9 on a transferable plasmid in a MDR clinical isolate E. hormaechei, which indicates the possibility of horizontal transfer of antibiotic resistance genes. | 2021 | 34220761 |
| 1531 | 2 | 0.9579 | Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. OBJECTIVES: To characterize two plasmids co-harboring carbapenem resistance genes and tmexCD2-toprJ2 in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains. METHODS: Two clinical CRKP strains were isolated and characterized by antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, and bioinformatics analysis. RESULTS: The two CRKP strains NB4 and NB5 were both resistant to imipenem, meropenem and tigecycline. Whole-genome sequencing revealed that two CRKP strains belonged to the ST11 type and carried multiple resistance genes. The tmexCD2-toprJ2 clusters in both strains were located on the IncFIB(Mar)-like/HI1B-like group of hybrid plasmids, which co-harbored the metallo-β-lactamase gene bla(NDM-1). In addition, the co-existence of bla(NDM-1) and bla(KPC-2) and the presence of tmexCD2-toprJ2 in CRKP strain NB5 was observed. CONCLUSIONS: In this study, tmexCD2-toprJ2 gene clusters were identified in two NDM-1-producing CRKP ST11 strains. These gene clusters will likely spread into clinical high-risk CRKP clones and exacerbate the antimicrobial resistance crisis. In addition, we detected the co-occurrence of bla(NDM-1), bla(KPC-2) and tmexCD2-toprJ2 in a single strain, which will undoubtedly accelerate the formation of a "superdrug resistant" bacteria. Hence, effective control measures should be implemented to prevent the further dissemination of such organisms in clinical settings. | 2022 | 35646740 |
| 1492 | 3 | 0.9570 | Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens. | 2025 | 40639501 |
| 1532 | 4 | 0.9569 | Identification of TMexCD-TOprJ-producing carbapenem-resistant Gram-negative bacteria from hospital sewage. Carbapenems and tigecycline are crucial antimicrobials for the treatment of gram-negative bacteria infections. Recently, a novel resistance-nodulation-division (RND) efflux pump gene cluster, tmexCD-toprJ, which confers resistance to tigecycline, has been discovered in animals and clinical isolates. It was reported that hospital sewage could act as a reservoir for gram-negative bacteria with high antimicrobial resistance genes. In this study, we analyzed 84 isolates of carbapenem-resistant gram-negative bacteria (CR-GNB) from hospital sewage, and identified five isolates of TMexCD-ToprJ-producing CR-GNB, including one Raoultella ornithinolytica isolate and four Pseudomonas spp. isolates. All these five isolates carried at least one carbapenem resistance gene and were resistant to multiple antibiotics. Multiple tmexCD-toprJ clusters were detected, including tmexC2D2-toprJ2, tmexC3D3-toprJ3, tmexC3.2D3.3-toprJ1b and tmexC3.2D3-toprJ1b. Among these clusters, the genetic construct of tmexC3.2D3-toprJ1b showed 2-fold higher minimum inhibitory concentration (MIC) of tigecycline than other three variants. In addition, it was found that the tmexCD-toprJ gene cluster was originated from Pseudomonas spp. and mainly located on Tn6855 variants inserted in the same umuC-like genes on chromosomes and plasmids. This unit co-localized with bla(IMP) or bla(VIM) on IncHI5-, Inc(pJBCL41)- and Inc(pSTY)-type plasmids in the five isolates of TMCR-GNB. The IncHI5- and Inc(pSTY)-type plasmids had the ability to conjugal transfer to E. coli J53 and P. aeruginosa PAO1, highlighting the potential risk of transfer of tmexCD-toprJ from Pseudomonas spp. to Enterobacterales. Importantly, genomic analysis showed that similar tmexCD-toprJ-harboring IncHI5 plasmids were also detected in human samples, suggesting transmission between environmental and human sectors. The emergence of TMCR-GNB from hospital sewage underscores the need for ongoing surveillance of antimicrobial resistance genes, particularly the novel resistance genes such as the tmexCD-toprJ gene clusters in the wastewater environment. | 2023 | 37480594 |
| 1505 | 5 | 0.9568 | New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations. | 2024 | 38408071 |
| 1409 | 6 | 0.9567 | Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria. | 2021 | 33617559 |
| 1438 | 7 | 0.9563 | Prevalence and molecular characterization of carbapenemase-producing gram-negative bacteria from a university hospital in China. BACKGROUND: The increasing emergence of carbapenem resistance in gram-negative bacteria associated with carbapenemase prompted the initiation of this study. METHODS: A total of 3139 gram-negative bacteria were recovered from a 3380-bed university hospital in Wenzhou during 2008 and 2012. Antimicrobial susceptibility was determined using the VITEK2 Compact System and agar dilution method. The phenotype and genotype of carbapenemase were demonstrated using the modified Hodge test, PCR and sequencing. A conjugation experiment was performed to reveal the transferability of resistant genes. The location of the carbapenemase gene was studied by plasmid analysis and southern blot hybridization. Clonal relatedness of the isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS: Overall, 751 of 3139 isolates (71/2055 Enterobacteriaceae, 510/620 Acinetobacter baumannii and 170/464 Pseudomonas aeruginosa) exhibited resistance to carbapenem. Carbapenemase-encoding genes were detected in 70.4% (50/71) of carbapenem-resistant Enterobacteriaceae, including blaKPC (80%) and blaIMP (20%). All A. baumannii subjected to genotype analysis were positive for blaOXA-51-like and co-harboured blaOXA-23-like (80.4%) and blaIMP (7.8%). ISAba1 was found upstream of blaOXA-23-like and blaOXA-51-like. Eight and seven strains of 170 P. aeruginosa carried blaIMP and blaVIM, respectively. PFGE analysis identified at least one dominant genotype in certain species. Four KPC-2-producing Klebsiella pneumoniae belonged to the same sequence type ST11. The plasmids carrying blaKPC were successfully transferred into recipient strains. CONCLUSION: This study highlights the challenge of increasing prevalence of carbapenem resistance associated with carbapenemase genes and dissemination of epidemic clones in Wenzhou, China. | 2016 | 26463362 |
| 1408 | 8 | 0.9561 | Six Extensively Drug-Resistant Bacteria in an Injured Soldier, Ukraine. Blood and surveillance cultures from an injured service member from Ukraine grew Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecium, and 3 distinct Pseudomonas aeruginosa strains. Isolates were nonsusceptible to most antibiotics and carried an array of antibiotic resistant genes, including carbapenemases (bla(IMP-1), bla(NDM-1), bla(OXA-23), bla(OXA-48), bla(OXA-72)) and 16S methyltransferases (armA and rmtB4). | 2023 | 37406356 |
| 1536 | 9 | 0.9559 | Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens. | 2021 | 34468190 |
| 1390 | 10 | 0.9559 | Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19. | 2024 | 39320334 |
| 1494 | 11 | 0.9558 | Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins. | 2020 | 32973731 |
| 1529 | 12 | 0.9557 | Emergence and Characterization of a Novel IncP-6 Plasmid Harboring bla (KPC-2) and qnrS2 Genes in Aeromonas taiwanensis Isolates. The dissemination of Klebsiella pneumoniae carbapenemases (KPCs) among Gram-negative bacteria is an important threat to global health. However, KPC-producing bacteria from environmental samples are rarely reported. This study aimed to elucidate the underlying resistance mechanisms of three carbapenem-resistant Aeromonas taiwanensis isolates recovered from river sediment samples. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) analysis indicated a close evolutionary relationship among A. taiwanensis isolates. S1-PFGE, Southern blot and conjugation assays confirmed the presence of bla (KPC-) (2) and qnrS2 genes on a non-conjugative plasmid in these isolates. Plasmid analysis further showed that pKPC-1713 is an IncP-6 plasmid with a length of 53,205 bp, which can be transformed into DH5α strain and mediated carbapenems and quinolones resistance. The plasmid backbone of p1713-KPC demonstrated 99% sequence identity to that of IncP-6-type plasmid pKPC-cd17 from Aeromonas spp. and IncP-6-type plasmid: 1 from Citrobacter freundii at 74% coverage. A 14,808 bp insertion sequence was observed between merT gene and hypothetical protein in p1713-KPC, which include the quinolone resistance qnrS2 gene. Emergence of plasmid-borned bla (KPC) and qnrS2 genes from A. taiwanensis isolates highlights their possible dissemination into the environment. Therefore, potential detection of such plasmids from clinical isolates should be closely monitored. | 2019 | 31572337 |
| 1440 | 13 | 0.9557 | High prevalence of carbapenem-resistant Escherichia coli ST410 from clinical isolates in Weifang, China. The objective of our work is to identify antimicrobial-resistance genes and to analyze clonality of carbapenem-resistant Escherichia coli. A total of 75 carbapenem-resistant E. coli (CREco) strains were isolated in a Chinese hospital from January 2021 to May 2023. The antibiotic susceptibility testing was conducted by BD PhoenixTM M50 System and Kirby-Bauer disk diffusion method. Whole-genome sequencing was performed on Illumina NovaSeq 6000 platform. Antimicrobial resistance genes were identified based on NCBI with ABRicate 0.8. Multilocus sequence typing (MLST) analysis for CREco was performed. Among the 75 CREco strains in this study, the most of them were isolated from urine samples (n = 20, 26.67%) at the intensive care unit (n = 14, 18.67%). Among the detected carbapenem resistance genes, blaNDM-5 was the most prevalent (n = 57, 76.00%), followed by blaNDM-4 (n = 3, 4.00%), blaNDM-9 (n = 3, 4.00%), and blaNDM-1 (n = 2, 2.67%). In addition, the colistin resistance gene mcr-1.1 (n = 11, 14.67%) and the tigecycline resistance gene tetX4 (n = 2, 2.67%) were also detected. The results of MLST revealed 25 sequence types (STs), and ST410 (n = 17) was the dominant clone. Other major STs included ST167 (n = 12), ST156 (n = 10), ST361 (n = 5), and ST101 (n = 4). Overall, CREco strains exhibited a high-level resistance rate to commonly used antimicrobial agents, and the most of them carried various NDM-coding genes, with blaNDM-5 being the predominant type. In this study, we demonstrated the diversity of carbapenem-resistant E. coli; however, the major clone was ST410. These results also show the dissemination of different clones of carbapenem-resistant E. coli. | 2025 | 40531574 |
| 1517 | 14 | 0.9557 | Co-occurrence of blaNDM-1, rmtC, and mcr-9 in multidrug-resistant Enterobacter kobei strain isolated from an infant with urinary tract infection. OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health. | 2023 | 37062506 |
| 1519 | 15 | 0.9557 | Epidemiology and resistance mechanisms of tigecycline- and carbapenem-resistant Enterobacteriaceae in China: a multicentre genome-based study. OBJECTIVES: To elucidate the molecular epidemiology of tigecycline and carbapenem-resistant Enterobacteriaceae isolates and mechanisms of tigecycline resistance. METHODS: We gathered 31 unduplicated strains of tigecycline-resistant Enterobacteriaceae from six hospitals nationwide. Antimicrobial susceptibility testing, phenotypic detection, and PCR identification were performed first, followed by homology analysis using MLST and PFGE. Conjugation transfer experiments using resistance gene plasmids were carried out, and the conjugates' growth curves were examined. All strains were sequenced using the Illumina HiSeq technology, and we identified a strain KP28 carrying a complete gene cluster tmexCD2-toprJ2. Then, its plasmid was further constructed using the PacBio platforms to complete the frame. The genetic connection of the tmexCD2-toprJ2 gene cluster carried by KP28 was established using core genome analyses. RESULTS: All 31 tigecycline-resistant Enterobacteriaceae strains (TG-CRE) were multidrug resistant. PFGE classified strains of CRKP, CRECL, and CRKAE into 16 distinct spectra, 6 distinct spectra, and 3 distinct spectra. MLST results showed a high concentration of ST11 in CRKP strains and a predominance of ST116 in CRECL strains, suggesting possible clonal transmission or selective dominance. The findings of the plasmid conjugation assay revealed that three strains expressing carbapenem resistance genes were effectively transmitted to the recipient cell E. coli EC600. WGS data revealed that these 31 strains include 79 resistance genes, with one strain (KP28) carrying the whole tigecycline resistance gene cluster, tmexC2D2-toprJ2. This resistance gene is contained in a large IncHI5 plasmid, which is difficult to transfer. CONCLUSION: The overall carriage rate of the tmexC2D2-toprJ2 gene cluster was found to be low among the five Chinese hospitals investigated. Conversely, tet(A) mutations were present in most of the strains. Bacteria with the carbapenem resistance genes bla (KPC) and bla (NDM) are vulnerable to horizontal transmission. Increasing the risk of transmission of antibiotic-resistant genes. | 2025 | 40400686 |
| 1499 | 16 | 0.9555 | Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam. OBJECTIVES: The incidence of carbapenem resistance among nosocomial Gram-negative bacteria in Vietnam is high and increasing, including among Enterobacterales. In this study, we assessed the presence of one of the main carbapenemase genes, bla(KPC), among carbapenem-resistant Enterobacterales (CRE) from four large hospitals in Hanoi, Vietnam, between 2010 and 2015, and described their key molecular characteristics. METHODS: KPC-producing Enterobacterales were detected using conventional PCR and were further analysed using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and whole-genome sequencing (WGS) for sequence typing and genetic characterisation. RESULTS: bla(KPC) genes were detected in 122 (20.4%) of 599 CRE isolates. bla(KPC)-carrying plasmids were diverse in size. Klebsiella pneumoniae harbouring bla(KPC) genes belonged to ST15 and ST11, whereas KPC-producing Escherichia coli showed more diverse sequence types including ST3580, ST448, ST709 and ST405. Genotypic relationships supported the hypothesis of circulation of a population of 'resident' resistant bacteria in one hospital through the years and of transmission among these hospitals via patient transfer. WGS results revealed co-carriage of several other antimicrobial resistance genes and three different genetic contexts of bla(KPC-2). Among these, the combination of ISEcp1-bla(CTX-M) and ISKpn27-bla(KPC)-ΔISKpn6 on the same plasmid is reported for the first time. CONCLUSION: We describe the dissemination of bla(KPC)-expressing Enterobacterales in four large hospitals in Hanoi, Vietnam, since 2010, which may have started earlier, along with their resistance patterns, sequence types, genotypic relationship, plasmid sizes and genetic context, thereby contributing to the overall picture of the antimicrobial resistance situation in Enterobacterales in Vietnam. | 2021 | 34607061 |
| 2002 | 17 | 0.9555 | IncHI1 plasmids mediated the tet(X4) gene spread in Enterobacteriaceae in porcine. The tigecycline resistance gene tet(X4) was widespread in various bacteria. However, limited information about the plasmid harboring the tet(X4) gene spread among the different species is available. Here, we investigated the transmission mechanisms of the tet(X4) gene spread among bacteria in a pig farm. The tet(X4) positive Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Enterobacter hormaeche were identified in the same farm. The whole genome sequencing (WGS) analysis showed that the K. pneumoniae belonged to ST727 (n = 11) and ST3830 (n = 1), E. cloacae and E. hormaeche belonged to ST524 (n = 1) and ST1862 (n = 1). All tet(X4) genes were located on the IncHI1 plasmids that could be conjugatively transferred into the recipient E. coli C600 at 30°C. Moreover, a fusion plasmid was identified that the IncHI1 plasmid recombined with the IncN plasmid mediated by ISCR2 during the conjugation from strains B12L to C600 (pB12L-EC-1). The fusion plasmid also has been discovered in a K. pneumoniae (K1L) that could provide more opportunities to spread antimicrobial resistance genes. The tet(X4) plasmids in these bacteria are derived from the same plasmid with a similar structure. Moreover, all the IncHI1 plasmids harboring the tet(X4) gene in GenBank belonged to the pST17, the newly defined pMLST. The antimicrobial susceptibility testing was performed by broth microdilution method showing the transconjugants acquired the most antimicrobial resistance from the donor strains. Taken together, this report provides evidence that IncHI1/pST17 is an important carrier for the tet(X4) spread in Enterobacteriaceae species, and these transmission mechanisms may perform in the environment. | 2023 | 37065147 |
| 1506 | 18 | 0.9554 | Detection of Five mcr-9-Carrying Enterobacterales Isolates in Four Czech Hospitals. The aim of this study was to report the characterization of the first mcr-positive Enterobacterales isolated from Czech hospitals. In 2019, one Citrobacter freundii and four Enterobacter isolates were recovered from Czech hospitals. The production of carbapenemases was examined by a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) imipenem hydrolysis assay. Additionally, bacteria were screened for the presence of carbapenemase-encoding genes and plasmid-mediated colistin resistance genes by PCR. To define the genetic units carrying mcr genes, the genomic DNAs of mcr-carrying clinical isolates were sequenced on the PacBio Sequel I platform. Results showed that all isolates carried bla(VIM)- and mcr-like genes. Analysis of whole-genome sequencing (WGS) data revealed that all isolates carried mcr-9-like alleles. Furthermore, the three sequence type 106 (ST106) Enterobacter hormaechei isolates harbored the bla(VIM-1) gene, while the ST764 E. hormaechei and ST95 C. freundii included bla(VIM-4) Analysis of plasmid sequences showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. Additionally, at least one multidrug resistance (MDR) region was identified in each mcr-9-carrying IncHI2 plasmid. The bla(VIM-4) gene was found in the MDR regions of p48880_MCR_VIM and p51929_MCR_VIM. In the three remaining isolates, bla(VIM-1) was localized on plasmids (∼55 kb) exhibiting repA-like sequences 99% identical to the respective gene of pKPC-CAV1193. In conclusion, to the best of our knowledge, these 5 isolates were the first mcr-9-positive bacteria of clinical origin identified in the Czech Republic. Additionally, the carriage of the bla(VIM-1) on pKPC-CAV1193-like plasmids is described for the first time. Thus, our findings underline the ongoing evolution of mobile elements implicated in the dissemination of clinically important resistance determinants.IMPORTANCE Infections caused by carbapenemase-producing bacteria have led to the revival of polymyxins as the "last-resort" antibiotic. Since 2016, several reports describing the presence of plasmid-mediated colistin resistance genes, mcr, in different host species and geographic areas were published. Here, we report the first detection of Enterobacterales carrying mcr-9-like alleles isolated from Czech hospitals in 2019. Furthermore, the three ST106 Enterobacter hormaechei isolates harbored bla(VIM-1), while the ST764 E. hormaechei and ST95 Citrobacter freundii isolates included bla(VIM-4) Analysis of WGS data showed that, in all isolates, mcr-9 was carried on IncHI2 plasmids. bla(VIM-4) was found in the MDR regions of IncHI2 plasmids, while bla(VIM-1) was localized on pKPC-CAV1193-like plasmids, described here for the first time. These findings underline the ongoing evolution of mobile elements implicated in dissemination of clinically important resistance determinants. Thus, WGS characterization of MDR bacteria is crucial to unravel the mechanisms involved in dissemination of resistance mechanisms. | 2020 | 33298573 |
| 1426 | 19 | 0.9553 | Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. OBJECTIVES: To identify the carbapenemase producing Gram-negative bacteria (GNB) by phenotypic methods and to confirm the presence of resistant genes using real-time polymerase chain reaction (PCR). METHODS: This was a prospective study carried out at the Department of Microbiology, Sri Venkata Sai Medical College and Hospital, Mahabubnagar, India, from March 2018-2021. All samples were screened for carbapenem resistance by disc diffusion method and the VITEK(®)2 compact system (bioMérieux, France). Detection of carbapenemase was carried out using RAPIDEC(®)CARBA NP test (Biomeriux Private Limited, South Delhi, India), screening for metallo-β-lactamases (MBL) was carried out by double disk synergy test (DDST), and genotypic characterization by real-time PCR. RESULTS: Among the 1093 Gram-negative bacilli identified, 220 (17.0%) were resistant to carbapenems by both tested methods. Carbapenemase detection using the RAPIDEC(®)CARBA NP test indicated that 207 (94.0%) were carbapenemase producers, of which 189 (91.2%) were MBL producers. The most common carbapenemase genes identified were New Delhi metallo-β-lactamase (NDM; 47.3%), followed by the co-existence of genes in combination of NDM, with Verona integron-mediated metallo-β-lactamase (VIM; 39.6%), VIM and oxacillin hydrolyzing enzymes-48 (OXA-48; 4.3%), and OXA-48 (1.4%).No gene of active on imipenem, Klebsiella pneumonia carbapenemase, VIM, or OXA-48 alone was detected. CONCLUSION: This study suggests routine carbapenem resistance testing among multi-drug resistant-GNBs, as most of these infections occur in hospitals. In addition, there is a possibility that these highly antibiotic-resistant genes could spread to other bacteria resulting in further dissemination. | 2022 | 35256490 |