# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2085 | 0 | 0.9860 | Quinolone Resistance Genes qnr, aac(6')-Ib-cr, oqxAB, and qepA in Environmental Escherichia coli: Insights into Their Genetic Contexts from Comparative Genomics. Previous studies have reported the occurrence of transferable quinolone resistance determinants in environmental Escherichia coli. However, little is known about their vectors and genetic contexts. To gain insights into these genetic characteristics, we analyzed the complete genomes of 53 environmental E. coli isolates containing one or more transferable quinolone resistance determinants, including 20 sequenced in this study and 33 sourced from RefSeq. The studied genomes carried the following transferable quinolone resistance determinants alone or in combination: aac(6')-Ib-cr, oqxAB, qepA1, qnrA1, qnrB4, qnrB7, qnrB19, qnrD1, qnrS1, and qnrS2, with qnrS1 being predominant. These resistance genes were detected on plasmids of diverse replicon types; however, aac(6')-Ib-cr, qnrS1, and qnrS2 were also detected on the chromosome. The genetic contexts surrounding these genes included not only those found in clinical isolates but also novel contexts, such as qnrD1 embedded within a composite transposon-like structure bounded by Tn3-derived inverted-repeat miniature elements (TIMEs). This study provides deep insights into mobile genetic elements associated with transferable quinolone resistance determinants, highlighting the importance of genomic surveillance of antimicrobial-resistant bacteria in the environment. | 2025 | 39960660 |
| 1763 | 1 | 0.9857 | Multidrug Resistance Genes Carried by a Novel Transposon Tn7376 and a Genomic Island Named MMGI-4 in a Pathogenic Morganella morganii Isolate. Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes. | 2022 | 35510850 |
| 3060 | 2 | 0.9857 | Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene. | 2009 | 19332679 |
| 1536 | 3 | 0.9854 | Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens. | 2021 | 34468190 |
| 1535 | 4 | 0.9852 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 1876 | 5 | 0.9851 | Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review. The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1-3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB. | 2020 | 32041167 |
| 2005 | 6 | 0.9851 | Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448. We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring bla(CMY-2). Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone. | 2017 | 28418308 |
| 3020 | 7 | 0.9850 | Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance. | 2019 | 31381486 |
| 1505 | 8 | 0.9850 | New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations. | 2024 | 38408071 |
| 1853 | 9 | 0.9850 | Dissemination dynamics of colistin resistance genes mcr-9 and mcr-10 across diverse Inc plasmid backbones. BACKGROUND: The polymyxin antibiotic colistin is used as a final line of treatment for life threatening infections caused by multidrug resistant and carbapenem-resistant Gram-negative bacteria. Mobile colistin resistance genes mcr-9 and mcr-10 are increasingly detected in Enterobacteriaceae but their epidemiology is poorly understood. METHODS: The genetic characteristics of mcr-9 and mcr-10, being the only mobile colistin resistance genes detected in a local population of Enterobacter species isolated from bloodstream infections in Dartmouth Hitchcock Medical Center, USA, were elucidated and contextualized against a global dataset of mcr-9/10-bearing plasmids using genomic and phylogenetic tools. RESULTS: Seven out of 59 Enterobacter isolates carry either an mcr-9 or mcr-10 on a plasmid with distinct single and multiple replicon configurations, including IncFIB(pECLA), IncFIB(K), IncFIA(HI1)-IncFIB(K), IncFIB(pECLA)--IncFII(pECLA) and IncFIB(K)--IncFII(pECLA), whereas two genomes harbor mcr-9 on their chromosome. Global contextualization reveals that allelic variants of mcr-9 and mcr-10 are widely disseminated across diverse Inc-type plasmids, transcending geographic and taxonomic boundaries. Plasmid-borne genes conferring resistance to other antimicrobial agents, such as aminoglycoside, tetracycline and trimethoprim, tend to co-occur with mcr-9.1 and mcr-9.2 alleles. CONCLUSIONS: Findings from this study enhance our understanding of the plasmid backgrounds of mcr-9 and mcr-10, their associated antimicrobial resistance gene carriage and co-occurrence. This knowledge may be critical to inform scalable and effective public health interventions aimed at preserving the efficacy of colistin. | 2025 | 40999001 |
| 1754 | 10 | 0.9849 | Transposons Carrying the aacC2e Aminoglycoside and bla(TEM) Beta-Lactam Resistance Genes in Acinetobacter. This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying bla(TEM) and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The bla(TEM-1) and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, bla(TEM-1) and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain bla(TEM) and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate bla(TEM) and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species. | 2024 | 38593463 |
| 1388 | 11 | 0.9849 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1877 | 12 | 0.9849 | Prevalence and Traits of Mobile Colistin Resistance Gene Harbouring Isolates from Different Ecosystems in Africa. The mobile colistin resistance (mcr) gene threatens the efficacy of colistin (COL), a last-line antibiotic used in treating deadly infections. For more than six decades, COL is used in livestock around the globe, including Africa. The use of critically important antimicrobial agents, like COL, is largely unregulated in Africa, and many other factors militate against effective antimicrobial stewardship in the continent. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. In Africa, mcr-1, mcr-2, mcr-3, mcr-5, mcr-8, and mcr-9 have been detected in isolates from humans, animals, foods of animal origin, and the environment. These genes are harboured by Escherichia coli, Klebsiella, Salmonella, Citrobacter, Enterobacter, Pseudomonas, Aeromonas, Alcaligenes, and Acinetobacter baumannii isolates. Different conjugative and nonconjugative plasmids form the backbone for mcr in these isolates; however, mcr-1 and mcr-3 have also been integrated into the chromosome of some African strains. Insertion sequences (ISs) (especially ISApl1), either located upstream or downstream of mcr, class 1 integrons, and transposons, are drivers of mcr in Africa. Genes coding multi/extensive drug resistance and virulence are colocated with mcr on plasmids in African strains. Transmission of mcr to/among African strains is nonclonal. Contact with mcr-habouring reservoirs, the consumption of contaminated foods of animal/plant origin or fluid, animal-/plant-based food trade and travel serve as exportation, importation, and transmission routes of mcr gene-containing bacteria in Africa. Herein, the current status of plasmid-mediated COL resistance in humans, food-producing animals, foods of animal origin, and environment in Africa is discussed. | 2021 | 33553426 |
| 2004 | 13 | 0.9849 | Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally. | 2020 | 32345737 |
| 1793 | 14 | 0.9848 | Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCE E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria. | 2019 | 30834329 |
| 1390 | 15 | 0.9848 | Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19. | 2024 | 39320334 |
| 1564 | 16 | 0.9848 | Co-occurrence of Rapid Gene Gain and Loss in an Interhospital Outbreak of Carbapenem-Resistant Hypervirulent ST11-K64 Klebsiella pneumoniae. We report an outbreak of carbapenemase-producing hypervirulent Klebsiella pneumoniae in two hospitals that undergo frequent patient transfers. Analysis of 11 completely assembled genomes showed that the bacteria were ST11-K64 strains. Moreover, 12 single nucleotide polymorphisms (SNPs) identified the strains as having originated from the same cluster, and were also indicative of the interhospital transmission of infection. Five plasmids were assembled in each of the strains. One plasmid carried several virulence genes, including the capsular polysaccharide regulators rmpA and rmpA2. Two others carried antimicrobial-resistance genes, including one for carbapenem resistance, bla (KPC-2). Comparative genomic analysis indicated the occurrence of frequent and rapid gain and loss of genomic content along transmissions and the co-existence of progeny strains in the same ward. A 10-kbp fragment harboring antimicrobial resistance-conferring genes flanked by insert sequences was missing in a plasmid from strain KP20194c in patient 3, and this strain also likely subsequently infected patient 4. However, strains containing the 10-kbp fragment were also isolated from the ward environment at approximately the same time, and harbored different chromosome indels. Tn1721 and multiple additional insert sequence-mediated transpositions were also seen. These results indicated that there is a rapid reshaping and diversification of the genomic pool of K. pneumoniae facilitated by mobile genetic elements, even a short time after outbreak onset. ST11-K64 CR-hvKP strains have the potential to become new significant superbugs and a threat to public health. | 2020 | 33281772 |
| 2636 | 17 | 0.9848 | Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Antimicrobial resistance is a "One Health" issue that requires improved knowledge of the presence and abundance of resistant bacteria in the environment. Extended-spectrum cephalosporins (ESCs) are critically important antibiotics (CIAs), and resistance to these CIAs is often encoded by beta-lactamase genes borne on conjugative plasmids. We thus decided to characterise 21 plasmids of ESC-resistant Escherichia coli randomly selected from isolates previously obtained from river water collected in a rural area in western France. The plasmids encoding ESC resistance were sequenced to investigate the diversity of the genes encoding ESC resistance and their genetic context. Sequences revealed that eleven IncI1 pMLST3 plasmids carried the bla(CTX-M-1) and sul2 genes, and some of them also had the tet(A), aadA5 or dfrA17 genes. The bla(CTX-M-1) gene was also detected on an IncN plasmid. Five plasmids obtained from four rivers contained bla(CTX-M-14), either on IncI1 or on IncFII plasmids. Two strains from two rivers contained bla(CTX-M-15) on IncN pMLST7 plasmids, with qnrS1 and dfrA14 genes. One plasmid contained the bla(CTX-M-55), a bla(TEM-1B)-like, and fosA genes. One plasmid contained the bla(CMY-2) gene. The diversity of the genes and plasmids of the resistant bacteria isolated from French rivers is probably related to the various animal and human origins of the isolated bacteria. | 2020 | 32273005 |
| 1511 | 18 | 0.9848 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 1737 | 19 | 0.9848 | Isolation and Characterisation of Human-Derived bla(KPC-3)-Producing Salmonella enterica Serovar Rissen in 2018. In this study, we describe a Salmonella enterica serovar (S.) Rissen strain with a reduced susceptibility to meropenem, isolated from a urinary infection in an 89-year-old woman in 2018 during activity surveillance in Italy (Enter-Net Italia). The genomic characteristics, pathogenicity, and antimicrobial resistance mechanisms were investigated via a genomic approach. Antimicrobial susceptibility testing revealed a "susceptible, increased exposure" phenotype to meropenem in the S. Rissen strain (4_29_19). Whole-genome sequencing (WGS) was performed using both the NovaSeq 6000 S4 PE150 XP platform (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore). The S. Rissen 4_29_19 strain harboured two plasmids: a pKpQIL-like plasmid carrying the bla(KPC-3) resistance gene in a Tn4401a transposon (pKPC_4_29_19), and a ColE-like plasmid (p4_4_29_19) without resistance genes, highly prevalent among Enterobacterales. Comparative analysis revealed that the pKPC_4_29_19 plasmid was highly related to the pKpQIL reference plasmid (GU595196), with 57% coverage and 99.96% identity, but lacking a region of about 30 kb, involving the FIIK(2) replicon region and the entire transfer locus, causing the loss of its ability to conjugate. To our knowledge, this is the first time that a pKpQIL-like plasmid, carrying bla(KPC-3), highly diffused in Klebsiella pneumoniae strains, has been identified in a Salmonella strain in our country. The acquisition of bla(KPC) genes by Salmonella spp. is extremely rare, and is reported only sporadically. In zoonotic bacteria isolated from humans, the presence of a carbapenem resistance gene carried by mobile genetic elements, usually described in healthcare-associated infection bacteria, represents an important concern for public health. | 2023 | 37760674 |