INCB - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
139100.9521Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine.201120718802
108910.9496Diversity of plasmids harboring bla(CMY-2) in multidrug-resistant Escherichia coli isolated from poultry in Brazil. Multidrug-resistance (MDR) has been increasingly reported in Gram-negative bacteria from the intestinal microbiota, environment and food-producing animals. Resistance plasmids able to harbor different transposable elements are capable to mobilize antimicrobial resistance genes and transfer to other bacterial hosts. Plasmids carrying bla(CMY) are frequently associated with MDR. The present study assessed the presence of plasmid-encoded ampC genes (bla(cmy), bla(mox), bla(fox), bla(lat), bla(act), bla(mir), bla(dha), bla(mor)) in commensal E. coli isolated from apparently healthy broiler chickens. Furthermore, we characterized the plasmids and identified those harboring the resistance genes. We isolated 144/200 (72%) of E. coli isolates with resistance to cefotaxime and the resistance gene identified was bla(CMY-2). The pulsed-field gel electrophoresis (PFGE) analysis showed high diversity of the genetic profiles. The phylogenetic groups A, B1, B2, and D were identified among E. coli isolates and group D was the most prevalent. The PCR-based replicon typing (PBRT) analysis identified four distinct plasmid incompatibility groups (Inc) in MDR isolates. Moreover, plasmids harboring bla(CMY-2), ranged in size from 50kb to 150kb and 51/144 (35%) belonged to IncK, 21/144 (14.5%) to IncB/O, 8/144 (5.5%) to IncA/C, 1/144 (0.5%) to IncI, while 63/144 (44.5%) were not typeable by PBRT. Overall, a high prevalence of bla(CMY-2) genes was found in a diverse population of commensal MDR E. coli from poultry in Brazil, harbored into different plasmids.201728602519
108820.9494Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans.201627482752
109030.9493Distribution of extended-spectrum cephalosporin resistance determinants in Salmonella enterica and Escherichia coli isolated from broilers in southern Japan. This study was conducted to investigate the distribution and diversity of extended-spectrum cephalosporin (ESC) resistance determinants in Salmonella enterica and Escherichia coli obtained from the same cecal samples and to provide evidence of transmission of the resistance determinants among these bacteria in broiler farms in southern Japan. Salmonella enterica and E. coli were characterized by serotyping and multilocus sequence typing, respectively. An antimicrobial susceptibility test, plasmid analysis, and identification and localization of resistance genes were performed to determine the relatedness of ESC resistance determinants among the isolates. Of 48 flocks examined, 14 had S. enterica. In total, 57 S. enterica isolates were obtained, 45 of which showed ESC resistance. Extended-spectrum cephalosporin-resistant E. coli were also obtained from all of these ESC-resistant Salmonella-positive samples. β-Lactamase genes, blaTEM-52 (38 isolates), blaCTX-M-14 (1 isolate), and blaCMY-2 (6 isolates), were carried by conjugative untypable or IncP plasmids detected in the S. enterica serovars Infantis and Manhattan. The β-lactamase genes blaCTX-M-14 (3 isolates), blaCTX-M-15 (3 isolates), blaSHV-2 (1 isolate), blaSHV-12 (2 isolates), and blaCMY-2 (32 isolates) associated with IncI1-Iγ, IncFIB, IncFIC, IncK, IncB/O, and IncY plasmids were detected in E. coli co-isolates. Restriction mapping revealed similar plasmids in Salmonella Infantis and Salmonella Manhattan and in different sequence types of E. coli. Intraspecies transmission of plasmids was suggested within S. enterica and E. coli populations, whereas interspecies transmission was not observed. This study highlights the importance of plasmids as carriers of ESC resistance determinants.201323687161
106740.9490Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.201526042965
138550.9489GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.202235255126
263660.9485Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Antimicrobial resistance is a "One Health" issue that requires improved knowledge of the presence and abundance of resistant bacteria in the environment. Extended-spectrum cephalosporins (ESCs) are critically important antibiotics (CIAs), and resistance to these CIAs is often encoded by beta-lactamase genes borne on conjugative plasmids. We thus decided to characterise 21 plasmids of ESC-resistant Escherichia coli randomly selected from isolates previously obtained from river water collected in a rural area in western France. The plasmids encoding ESC resistance were sequenced to investigate the diversity of the genes encoding ESC resistance and their genetic context. Sequences revealed that eleven IncI1 pMLST3 plasmids carried the bla(CTX-M-1) and sul2 genes, and some of them also had the tet(A), aadA5 or dfrA17 genes. The bla(CTX-M-1) gene was also detected on an IncN plasmid. Five plasmids obtained from four rivers contained bla(CTX-M-14), either on IncI1 or on IncFII plasmids. Two strains from two rivers contained bla(CTX-M-15) on IncN pMLST7 plasmids, with qnrS1 and dfrA14 genes. One plasmid contained the bla(CTX-M-55), a bla(TEM-1B)-like, and fosA genes. One plasmid contained the bla(CMY-2) gene. The diversity of the genes and plasmids of the resistant bacteria isolated from French rivers is probably related to the various animal and human origins of the isolated bacteria.202032273005
123870.9485Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health.202236015067
150580.9484New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. Mobile colistin resistance (mcr) genes were described recently in Gram-negative bacteria including carbapenem-resistant Enterobacterales. There are ten mcr genes described in different Gram-negative bacteria, however, Escherichia coli harboring mcr-1 gene is by far the most frequent combination. In Argentina, mcr-1 gene was characterized only on plasmids belonging to IncI2 group. The aim of this work was to get new insights of mcr-1-harboring plasmids from E. coli. Eight E. coli isolates from a larger collection of 192 clinical E. coli isolates carrying the mcr-1 gene were sequenced using next generation technologies. Three isolates belonged to ST131 high-risk clone, and five to single ST, ST38, ST46, ST226, ST224, and ST405. Eight diverse mcr-1-harboring plasmids were analyzed: IncI2 (1), IncX4 (3), IncHI2/2A (3) and a hybrid IncFIA/HI1A/HI1B (1) plasmid. Plasmids belonging to the IncI2 (n = 1) and IncX4 (n = 3) groups showed high similarity with previously described plasmids. Two IncHI2/HI2A plasmids, showed high identity between them, while the third, showed several differences including additional resistance genes like tet(A) and floR. One IncFIA/H1A/H1B hybrid plasmid was characterized, highly similar to pSRC27-H, a prototype plasmid lacking mcr genes. mcr-1.5 variant was found in four plasmids with three different Inc groups: IncI2, IncHI2/HI2A and the hybrid FIA/HI1A/HI1B plasmid. mcr-1.5 variant is almost exclusively described in our country and with a high frequency. In addition, six E. coli isolates carried three allelic variants codifying for CTX-M-type extended-spectrum-β-lactamases: blaCTX-M-2 (3), blaCTX-M-65 (2), and blaCTX-M-14 (1). It is the first description of mcr-1 harboring plasmids different to IncI2 group in our country. These results represents new insights about mcr-1 harboring plasmids recovered from E. coli human samples from Argentina, showing different plasmid backbones and resistance gene combinations.202438408071
138690.9484ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria.202540370835
1392100.9483High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes.202337186228
1091110.9483Co-harboring of cephalosporin (bla)/colistin (mcr) resistance genes among Enterobacteriaceae from flies in Thailand. The spreading of antimicrobial-resistant Enterobacteriaceae, especially those co-harboring plasmid-mediated cephalosporin (bla) and colistin (mcr) resistance genes, is becoming increasingly problematic. As a vector, flies carry antimicrobial-resistant bacteria (ARB) into human and livestock habitats. To investigate ARB in flies, we collected 235 flies from 27 sites (18 urban areas, five pig farms and four chicken farms) in Thailand during 2013-2015. Cefotaxime-resistant Enterobacteriaceae (CtxRE) and bla-positive CtxRE were isolated from 70 (29.8%) and 48 (20.4%) flies, respectively. In 93 bla-positive CtxRE isolates that included Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae from 48 flies, the most frequent bla gene was TEM (n = 62), followed by CTX-M-55 (n = 31), CTX-M-14 (n = 26), CMY-2 (n = 24) and SHV (n = 10), and 58 isolates harbored multiple types of these genes. In addition, we detected the mcr-1 (n = 1) and mcr-3 (n = 19) genes in bla-positive CtxRE isolates from 16 flies. In conjugation experiments, 10 mcr-3- and bla-positive isolates exhibited co-transfer of mcr-3 and blaTEM-1 genes. These results suggest that a relatively high proportion of flies in Thailand carries cephalosporin-resistant Enterobacteriaceae harboring co-transmissible cephalosporin and colistin resistance genes.201830010911
1101120.9482New insights into resistance to colistin and third-generation cephalosporins of Escherichia coli in poultry, Portugal: Novel bla(CTX-M-166) and bla(ESAC) genes. The increasing incidence of intestinal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and Gram negative organisms that has been observed in food animals such as poultry, cattle and pigs, are suggestive that animals, food and environment are potential sources of ESBL-producing bacteria. Hence, the aim of this study was to characterized commensal E. coli obtained from healthy broiler and turkey flocks at slaughter for the presence of penicillinases-, ESBL-, extended-spectrum AmpC (ESAC)-, plasmid-mediated quinolone resistance- and MCR-encoding genes. Study of clonal relatedness showed genetic diversity among CTX-M-type, SHV-12 and TEM-52 producing isolates with human isolates of the same type, was also assessed. We detected that eleven (5.4%, 11/202) and forty-five (2.2%, 45/185) E. coli isolates from broilers and turkeys, respectively, carried bla(ESBL) or bla(ESAC) genes and two isolates from turkeys carried mcr-1 gene. A new variant bla(CTX-M-166) was reported in a multidrug resistant isolate from a broiler flock. Overall, we detected a diversity of resistance mechanisms among E. coli from food-producing animals, all of them with high importance at a public health level.201729031106
1100130.9482Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried bla(CTX-M) and bla(TEM) genes, one (5.2 %) bla(SHV) and bla(TEM) genes, one isolate (5.2 %) carried bla(CTX-M) and one (5.2 %) bla(SHV) alone. The majority of CTX-M-positive E. coli isolates carried the bla(CTX-M-15) gene (13 isolates), being the bla(CTX-M-9), bla(CTX-M-2), and bla(CTX-M-8) (one isolate each) also detected. Two SHV-positive isolates presented the bla(SHV-5) and bla(SHV-12) allele. The isolate identified as E. fergusonii was positive for bla(CTX-M-65) gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain.202336931145
1390140.9481Oxacillinase-484-Producing Enterobacterales, France, 2018-2023. We examined the emergence and characteristics of oxacillinase-484-producing Enterobacterales in France during 2012-2023. Genomic analysis identified 2 predominant sequence types in Escherichia coli: ST410 and ST1722. Plasmid analysis revealed that bla(OXA-484) genes were carried mostly on an IncX3-type plasmid associated with genetic elements including insertion sequences IS3000 and ISKpn19.202439320334
1099150.9480Prevalence of Beta-Lactam and Quinolone/Fluoroquinolone Resistance in Enterobacteriaceae From Dogs in France and Spain-Characterization of ESBL/pAmpC Isolates, Genes, and Conjugative Plasmids. Quantitative data on fecal shedding of antimicrobial-resistant bacteria are crucial to assess the risk of transmission from dogs to humans. Our first objective was to investigate the prevalence of quinolone/fluoroquinolone-resistant and beta-lactam-resistant Enterobacteriaceae in dogs in France and Spain. Due to the particular concern about possible transmission of extended-spectrum cephalosporin (ESC)-resistant isolates from dogs to their owners, we characterized the ESBL/pAmpC producers collected from dogs. Rectal swabs from 188 dogs, without signs of diarrhea and that had not received antimicrobials for 4 weeks before the study, were quantified for total and resistant Enterobacteriaceae on selective media alone or containing relevant antibiotic concentrations. Information that might explain antibiotic resistance was collected for each dog. Extended-spectrum cephalosporin-resistant isolates were subjected to bacterial species identification (API20E), genetic lineage characterization (MLST), ESBL/pAmpC genes identification (sequencing), and plasmid characterization (pMLST). Regarding beta-lactam resistance, amoxicillin- (AMX) and cefotaxime- (CTX) resistant Enterobacteriaceae were detected in 70 and 18% of the dogs, respectively, whereas for quinolone/fluoroquinolone-resistance, Nalidixic acid- (NAL) and ciprofloxacin- (CIP) resistant Enterobacteriaceae were detected in 36 and 18% of the dogs, respectively. Medical rather than preventive consultation was a risk marker for the presence of NAL and CIP resistance. CTX resistance was mainly due to a combination of specific ESBL/pAmpC genes and particular conjugative plasmids already identified in human patients: bla (CTX-M-1)/IncI1/ST3 (n = 4), bla (CMY-2)/IncI1/ST12 (n = 2), and bla (CTX-M-15)/IncI1/ST31 (n = 1). bla (SHV-12) (n = 3) was detected in various plasmid lineages (InI1/ST3, IncI1/ST26, and IncFII). ESBL/pAmpC plasmids were located in different genetic lineages of E. coli, with the exception of two strains in France (ST6998) and two in Spain (ST602). Our study highlights dogs as a potential source of Q/FQ-resistant and ESBL/pAmpC-producing bacteria that might further disseminate to humans, and notably a serious risk of future acquisition of CTX-M-1 and CMY-2 plasmids by the owners of dogs.201931544108
1093160.9480The rate of frequent co-existence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes in Escherichia coli isolates from retail raw chicken in South Korea. Since plasmid-encoded antibiotic resistance facilitates the emergence of antibiotic-resistant bacteria, the increasing prevalence of Escherichia coli harboring plasmid-mediated quinolone resistance (PMQR) and extended-spectrum β-lactamase (ESBL) genes is a public health concern. The objective of this study is to investigate the co-existence of PMQR and ESBL genes in E. coli isolates from retail raw chicken in South Korea. Among 67 ESBL-producing E. coli isolates from 40 retail raw chicken, more than half of them carried PMQR genes, including qnrS, aac(6')-Ib-cr, and oqxAB. The qnrS was predominantly (91.4%) detected in E. coli isolates carrying both PMQR and ESBL. The aac(6')-Ib-cr was detected in seven ESBL-producing E. coli strains, and 85.7% of the aac(6')-Ib-cr-positive strains also carried qnrS. Moreover, the strains co-harboring qnrS and aac(6')-Ib-cr exhibited increased resistance to ciprofloxacin and kanamycin. These results demonstrate that PMQR genes are frequently detected in ESBL-producing E. coli isolates from retail raw chicken in South Korea.202235646407
1497170.9480Colistin-resistant mcr-1-positive Escherichia coli ST1775-H137 co-harboring bla(CTX-M-2) and bla(CMY-2) recovered from an urban stream. The rapid dissemination of colistin resistance mcr-type genes and extended-spectrum β-lactamase-encoding genes at the human-animal-environment interface has raised concerns worldwide. In this study, we performed a genomic investigation of a multidrug (MDR)- and colistin-resistant Escherichia coli strain recovered from an urban stream strongly affected by pollution and used for recreational purposes in Brazil. E. coli strain EW827 was resistant to clinically significant antimicrobials, including polymyxins, extended-spectrum cephalosporins, and fluoroquinolones. Whole-genome sequencing analysis revealed that EW827 strain belonged to ST1775 and carried the fimH137 allele, clinically relevant antimicrobial resistance genes (e.g., mcr-1.1, bla(CTX-M-2), and bla(CMY-2)), tolerance genes to metals, and biocide resistance genes. Moreover, IncX4 and IncI1-ST12 replicon types were identified carrying mcr-1.1 and bla(CMY-2), respectively. A novel genetic environment of the mcr-1.1 gene, in which a 258-bp ∆IS5-like was inserted in the opposite orientation upstream of the mcr-1.1-pap2 element, was also detected. Additionally, the bla(CTX-M-2) gene was harbored by a Tn21-like element on the chromosome. The occurrence of MDR E. coli co-harboring mcr-1.1, bla(CTX-M-2), and bla(CMY-2) in urban water represents a potential risk to humans, animals, and environmental safety. Therefore, epidemiological studies are required to monitoring multidrug-resistant bacteria and their antimicrobial resistance genes in aquatic ecosystems to determine possible routes and fates of these genes.202134823029
1504180.9479Identification and Genomic Analyses of a Multidrug Resistant Avian Pathogenic Escherichia coli Coharboring mcr-1, bla (TEM-176) and bla (CTX-M-14) Genes. The emergence and transmission of the colistin-resistance gene mcr and extended-spectrum β-lactamase (ESBL) encoding genes pose a significant threat to global public health. In recent years, it has been reported that mcr-1 and ESBL genes can coexist in single bacteria strain. The objective of this study was to characterize a multidrug-resistant (MDR) avian pathogenic Escherichia coli (APEC) isolate carrying mcr and ESBL encoding genes in China. A total of 200 APEC isolates were collected for antimicrobial susceptibility testing by Kirby-Bauer (K-B) disk method. The MDR strain EC012 were then further analyzed for minimum inhibitory concentrations, antimicrobials resistance genes (ARGs) detection, conjugation, and whole-genome sequencing (WGS). Among all APEC isolates determined by K-B disk method, strain EC012 was resistant to almost all the antimicrobials, including polymyxin B, cefotaxime, and ceftazidime. Moreover, EC012 harbored ARGs mcr-1, bla (TEM-176), and bla (CTX-M-14). WGS analysis revealed that EC012 belonged to epidemic APEC serotype O1:H16 and multilocus sequence type ST295. EC012 consisted of one chromosome and six plasmids, encoding a broad ARGs. The bla (CTX-M-14), mcr-1 or bla (TEM-176) genes were located on conjugative plasmids pEC012-1 or pEC012-5, respectively. These plasmids were successfully transferred to transconjugants and resulted in the resistance to polymyxin B, cefotaxime, and ceftazidime. This study indicated that APEC was a potential reservoir of colistin-resistance gene mcr-1 and ESBL encoding genes, and highlighted the necessity for enhanced monitoring of ARGs dissemination among bacteria from different origins.202440303132
1097190.9478CTX-M-producing Escherichia coli Isolated from urban pigeons (Columba livia domestica) in Brazil. INTRODUCTION: Worldwide urban pigeons (Columba livia domestica) are an important reservoir of pathogenic and multidrug-resistant bacteria (MDR). Plasmids are key genetic elements in the dissemination of antimicrobial drug resistance in bacteria, including beta-lactams and quinolones, which are the most important classes of drugs for treatment of Enterobacteriaceae infections in human and veterinary medicine. The aim of this study was to determine the presence of Escherichia coli (E. coli) harboring plasmids containing extend-spectrum (ESBL) and pAmpC beta-lactamases, also plasmid-mediated quinolone resistance (PMQR) genes in urban pigeons from São Paulo State, Brazil. METHODOLOGY: A collection of 107 isolates of E. coli from urban pigeons from four cities was screened by antimicrobial resistance phenotypic and PCR for genes encoding ESBL, pAmpC and PMQR genes. Clonality was evaluated by ERIC-PCR. RESULTS: We found three strains positive for blaCTX-M genes. In two clonally related CTX-M-8-producing strains, the gene was associated with IncI1 plasmids. An MDR strain harboring blaCTX-M-2, the plasmid could not be transferred. No strain was positive for PMQR genes. CONCLUSION: These results indicate that CTX-M-2 and CTX-M-8-producing E. coli are present in urban pigeons, which could serve as a reservoir for ESBL-producing E. coli in Brazil.201932087078