IMPLANT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
61100.9763The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.201728728970
818810.9738Biofilm in implant infections: its production and regulation. A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intraocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of beta-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intra-ocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.200516353112
62020.9735Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.202234902269
375730.9732Unveiling the fate of adhering bacteria to antimicrobial surfaces: expression of resistance-associated genes and macrophage-mediated phagocytosis. Since most antibacterial coatings reported to fight biomaterial-associated infections (BAI) fail in completely preventing bacterial colonization, it is crucial to know the impact of that small fraction of adhered bacteria in BAI recrudescence. This study aims to understand the fate of Staphylococcus aureus able to adhere to an antimicrobial coating previously developed, in terms of potential development of bacterial resistance and their macrophage-mediated phagocytosis. Antimicrobial coating comprised the co-immobilization of Palm peptide and DNase I onto polydimethylsiloxane. Expression of genes associated to resistance and virulence mechanisms showed that cells in contact with antimicrobial surfaces for a long period of 30 days, exhibit genes equally or less expressed, as compared to cells recovered from control surfaces. Recovered cells also exhibit the same susceptibility patterns, which strengthens the evidence of no resistance development. Remarkably, cells adhered to modified surfaces shows a reduced metabolic activity upon vancomycin treatment unlike the cells found on control surfaces, which can be identified as a clinical opportunity for prophylactically administration after implant surgery. Furthermore, results highlight that functionalization of PDMS with Palm and DNase I should not compromise the action of host immune cells. The overall results reinforce the potential of this antimicrobial strategy to fight BAI.201830071350
905940.9724Validation of Suitable Carrier Molecules and Target Genes for Antisense Therapy Using Peptide-Coupled Peptide Nucleic Acids (PNAs) in Streptococci. Antisense peptide nucleic acids (PNAs) targeting genes involved in metabolism or virulence are a possible means to treat infections or to investigate pathogenic bacteria. Potential targets include essential genes, virulence factor genes, or antibiotic resistance genes. For efficient cellular uptake, PNAs can be coupled to cell-penetrating peptides (CPPs). CPPs are peptides that serve as molecular transporters and are characterized by a comparably low cytotoxicity. So far, there is only limited information about CPPs that mediate PNA uptake by Gram-positive bacteria. Here, we describe two methods to identify suitable CPP-antisense PNA conjugates, novel carrier molecules, and efficient target genes for streptococcal species and to evaluate their antimicrobial efficiency.202032430835
907350.9721EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. In reverse vaccinology approaches, complete proteomes of bacteria are submitted to multiple computational prediction steps in order to filter proteins that are possible vaccine candidates. Most available tools perform such analysis only in a single strain, or a very limited number of strains. But the vast amount of genomic data had shown that most bacteria contain pangenomes, i.e., their genomic information contains core, conserved genes, and random accessory genes specific to each strain. Therefore, in reverse vaccinology methods it is of the utmost importance to define core proteins and core epitopes. EpitoCore is a decision-tree pipeline developed to fulfill that need. It provides surfaceome prediction of proteins from related strains, defines core proteins within those, calculate their immunogenicity, predicts epitopes for a given set of MHC alleles defined by the user, and then reports if epitopes are located extracellularly and if they are conserved among the core homologs. Pipeline performance is illustrated by mining peptide vaccine candidates in Mycobacterium avium hominissuis strains. From a total proteome of ~4,800 proteins per strain, EpitoCore predicted 103 highly immunogenic core homologs located at cell surface, many of those related to virulence and drug resistance. Conserved epitopes identified among these homologs allows the users to define sets of peptides with potential to immunize the largest coverage of tested HLA alleles using peptide-based vaccines. Therefore, EpitoCore is able to provide automated identification of conserved epitopes in bacterial pangenomic datasets.202032431712
61060.9720Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in [Formula: see text] Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in [Formula: see text], parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.IMPORTANCEEntamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. The gut flora is implicated in the onset of symptomatic amebiasis due to alterations in the composition of bacteria. These bacteria modulate the physiology of the parasite and affect the virulence of the parasite through unknown mechanisms. Queuine, a modified nucleobase of queuosine, is exclusively produced by the gut bacteria and leads to tRNA modification at the anticodon loops of specific tRNAs. We found that queuine induces mild oxidative stress resistance in the parasite and attenuates its virulence. Our study highlights the importance of bacterially derived products in shaping the physiology of the parasite. The fact that queuine inhibits the virulence of E. histolytica may lead to new strategies for preventing and/or treating amebiasis by providing to the host queuine directly or via probiotics.202133688012
981570.9720Prospecting gene therapy of implant infections. Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or "antigene" molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising.200919882546
55480.9716VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.202032318043
61290.9716Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues.201424365646
619100.9714Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (Rom(R)) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the Rom(R) clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the Rom(R) clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the Rom(R) clone compared to its parental strain HG001. If farE is deleted in the Rom(R) clone, or, if native farR is expressed in the Rom(R) strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the Rom(R) clone, that FarR is an important regulator, and that the point mutation in farR (Rom(R) clone) makes the clone hyper-virulent.201931191485
8351110.9713Photorhabdus toxins: novel biological insecticides. Following concerns over the potential for insect resistance to insecticidal Bacillus thuringiensis toxins expressed in transgenic plants, there has been recent interest in novel biological insecticides. Over the past year there has been considerable progress in the cloning of several alternative toxin genes from the bacteria Photorhabdus luminescens and Xenorhabdus nematophilus. These genes encode large insecticidal toxin complexes with little homology to other known toxins.199910383860
9055120.9713siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection. Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.202540054457
5806130.9713Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Orthopaedic implant-associated infections are a devastating complication of orthopaedic surgery with a significant impact on patients and healthcare systems. The aims of this work were to describe the patterns of antimicrobial resistance, pathogenicity and virulence of clinical bacterial isolates from orthopaedic implant-associated infections and to further isolate and characterise bacteriophages that are efficient in controlling these bacteria. Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolated from orthopaedic infections showed multiresistance patterns to the most frequently used antibiotics in clinical settings. The presence of mobile genetic elements (mecA, Tn916/Tn1545 and intl1) and virulence determinants (icaB, cna, hlb, cylLs, cylM, agg, gelE, fsr and fimA) highlighted the pathogenicity of these isolates. Moreover, the isolates belonged to clonal complexes associated with the acquisition of pathogenicity islands and antimicrobial resistance genes by recombination and horizontal gene transfer. Bacteriophages vB_SauM_LM12, vB_EfaS_LM99 and vB_EcoM_JB75 were characterised and their ability to infect clinical isolates of S. aureus, E. faecalis and E. coli, respectively, was assessed. Morphological and genomic analyses revealed that vB_EfaS_LM99 and vB_EcoM_JB75 belong to the Siphoviridae and Myoviridae families, respectively, and no genes associated with lysogeny were found. The bacteriophages showed low latent periods, high burst sizes, broad host ranges and tolerance to several environmental conditions. Moreover, they showed high efficiency and specificity to infect and reduce clinical bacteria, including methicillin-resistant S. aureus and vancomycin-resistant enterococci. Therefore, the results obtained suggest that the bacteriophages used in this work are a promising approach to control these pathogens involved in orthopaedic implant-associated infections.201931229670
8164140.9713Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance.202032026301
739150.9712Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.202438561900
8438160.9711Virulence of Bacteria Colonizing Vascular Bundles in Ischemic Lower Limbs. BACKGROUND: We documented previously the presence of bacterial flora in vascular bundles, lymphatics, and lymph nodes of ischemic lower limbs amputated because of multifocal atheromatic changes that made them unsuitable for reconstructive surgery and discussed their potential role in tissue destruction. The question arose why bacterial strains inhabiting lower limb skin and considered to be saprophytes become pathogenic once they colonize deep tissues. Bacterial pathogenicity is evoked by activation of multiple virulence factors encoded by groups of genes. METHODS: We identified virulence genes in bacteria cultured from deep tissue of ischemic legs of 50 patients using a polymerase chain reaction technique. RESULTS: The staphylococcal virulence genes fnbA (fibronectin-binding protein A), cna (collagen adhesin precursor), and ica (intercellular adhesion) were present in bacteria isolated from both arteries and, to a lesser extent, skin. The IS256 gene, whose product is responsible for biofilm formation, was more frequent in bacteria retrieved from the arteries than skin bacteria. Among the virulence genes of Staphylococcus epidermidis encoding autolysin atlE, icaAB (intercellular adhesion), and biofilm insert IS256, only the latter was detected in arterial specimens. Bacteria cultured from the lymphatics did not reveal expression of eta and IS256 in arteries. The Enterococcus faecalis asa 373 (aggregation substance) and cylA (cytolysin activator) frequency was greater in arteries than in skin bacteria, as were the E. faecium cyl A genes. All Pseudomonas aeruginosa virulence genes were present in bacteria cultured from both the skin and arteries. Staphylococci colonizing arterial bundles and transported to tissues via ischemic limb lymphatics expressed virulence genes at greater frequency than did those dwelling on the skin surface. Moreover, enterococci and Pseudomonas isolated from arterial bundles expressed many virulence genes. CONCLUSIONS: These findings may add to the understanding of the mechanism of development of destructive changes in lower limb ischemic tissues by the patient's, but not hospital-acquired, bacteria, as well as the generally unsatisfactory results of antibiotic administration in these cases. More aggressive antibiotic therapy targeted at the virulent species should be applied.201626431369
5162170.9711Genomic identification and characterization of Streptococcus oralis group that causes intraamniotic infection. BACKGROUND: Intraamniotic infection is a cause of spontaneous preterm labor. Streptococcus mitis is a common pathogen identified in intraamniotic infection, with the possible route of hematogenous dissemination from the oral cavity or migration from the vaginal canal. However, there are a few reports on Streptococcus oralis, a member of the S. mitis group, as a cause of pathogen in intraamniotic infection. We reported herein whole genome sequencing and comparative genomic analysis of S. oralis strain RAOG5826 that causes intraamniotic infection. RESULTS: Streptococcus mitis was initially identified from amniotic fluid, vaginal swab, and fetal blood of a patient presenting with preterm prelabor rupture of membranes with intraamniotic infection by the use of conventional microbiological methods (biochemical phenotype, MALDI-ToF, 16 S rRNA). Subsequently, this strain was later identified as S. oralis RAOG5826 by whole-genome hybrid sequencing. Genes involved in macrolide and tetracycline resistance, namely ermB and tet(M), and mutations in penicillin-binding protein were present in the genome. Moreover, potential virulence genes were predicted and compared with other Streptococcal species. CONCLUSION: We reported a comprehensive genomic analysis of S. oralis, which causes intraamniotic infection. S. mitis was initially identified by conventional microbiological identification. However, whole-genome hybrid sequencing demonstrates S. oralis with complete profiles of antimicrobial resistance genes and potential virulence factors. This study highlights the limitations of traditional techniques and underscores the importance of genomic sequencing for accurate diagnosis and tailored antimicrobial treatment. The study also suggests that S. oralis may be an underestimated pathogen in intraamniotic infection.202541023353
4778180.9709DNA extraction of microbial DNA directly from infected tissue: an optimized protocol for use in nanopore sequencing. Identification of bacteria causing tissue infections can be comprehensive and, in the cases of non- or slow-growing bacteria, near impossible with conventional methods. Performing shotgun metagenomic sequencing on bacterial DNA extracted directly from the infected tissue may improve time to diagnosis and targeted treatment considerably. However, infected tissue consists mainly of human DNA (hDNA) which hampers bacterial identification. In this proof of concept study, we present a modified version of the Ultra-Deep Microbiome Prep kit for DNA extraction procedure, removing additional human DNA. Tissue biopsies from 3 patients with orthopedic implant-related infections containing varying degrees of Staphylococcus aureus were included. Subsequent DNA shotgun metagenomic sequencing using Oxford Nanopore Technologies' (ONT) MinION platform and ONTs EPI2ME WIMP and ARMA bioinformatic workflows for microbe and antibiotic resistance genes identification, respectively. The modified DNA extraction protocol led to an additional ~10-fold reduction of human DNA while preserving S. aureus DNA. Including the DNA sequencing and bioinformatics analyses, the presented protocol has the potential of identifying the infection-causing pathogen in infected tissue within 7 hours after biopsy. However, due to low number of S. aureus reads, positive identification of antibiotic resistance genes was not possible.202032076089
8366190.9709Novel LanT associated lantibiotic clusters identified by genome database mining. BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and 3 with LanBC genes. Putative lantibiotic clusters identified here hold the potential for the discovery of novel lantibiotic(s).201424621781