# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 533 | 0 | 0.9822 | Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. Four new cloning vectors have been constructed from the broad-host-range cloning vector pRK290. These vectors, pLA2901, pLA2905, pLA2910, and pLA2917, confer resistance to kanamycin and tetracycline. The latter two are cosmid derivatives of pLA2901. The new vectors can be mobilized into, and are stably maintained in, a variety of gram-negative bacteria. A Sau3A genomic bank of Methylobacterium organophilum strain xx DNA has been constructed in pLA2917, and complementation analysis, with a variety of mutants unable to grow on methanol, revealed at least five separate regions necessary for growth on methanol. Complementation analysis and Tn5 mutagenesis data suggest that at least three genes are responsible for expression of active methanol dehydrogenase. | 1985 | 2982796 |
| 113 | 1 | 0.9805 | Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-L-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins. | 2011 | 21586574 |
| 6354 | 2 | 0.9800 | Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. A plasmid-borne copper resistance operon (lco) was identified from Lactococcus lactis subsp. lactis LL58-1. The lco operon consists of three structural genes lcoABC. The predicted products of lcoA and lcoB were homologous to chromosomally encoded prolipoprotein diacylglyceral transferases and two uncharacterized proteins respectively, and the product of lcoC is similar to several multicopper oxidases, which are generally plasmid-encoded. This genetic organization represents a new combination of genes for copper resistance in bacteria. The three genes are co-transcribed from a copper-inducible promoter, which is controlled by lcoRS encoding a response regulator and a kinase sensor. The five genes are flanked by two insertion sequences, almost identical to IS-LL6 from L. lactis. Transposon mutagenesis and subcloning analysis indicated that the three structural genes were all required for copper resistance. Copper assay results showed that the extracellular concentration of copper of L. lactis LM0230 containing the lco operon was significantly higher than that of the host strain when copper was added at concentrations from 2 to 3 mM. The results suggest that the lco operon conferred copper resistance by reducing the intracellular accumulation of copper ions in L. lactis. | 2002 | 12384305 |
| 3007 | 3 | 0.9798 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 499 | 4 | 0.9797 | Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. Mycobacterium abscessus belongs to a group of rapidly growing mycobacteria (RGM) and accounts for approximately 65-80% of lung disease caused by RGM. It is highly pathogenic and is considered the prominent Mycobacterium involved in pulmonary infection in patients with cystic fibrosis and chronic pulmonary disease (CPD). FosM is a putative 134 amino acid fosfomycin resistance enzyme from M. abscessus subsp. bolletii that shares approximately 30-55% sequence identity with other vicinal oxygen chelate (VOC) fosfomycin resistance enzymes and represents the first of its type found in any Mycobacterium species. Genes encoding VOC fosfomycin resistance enzymes have been found in both Gram-positive and Gram-negative pathogens. Given that FosA enzymes from Gram-negative bacteria have evolved optimum activity towards glutathione (GSH) and FosB enzymes from Gram-positive bacteria have evolved optimum activity towards bacillithiol (BSH), it was originally suggested that FosM might represent a fourth class of enzyme that has evolved to utilize mycothiol (MSH). However, a sequence similarity network (SSN) analysis identifies FosM as a member of the FosX subfamily, indicating that it may utilize water as a substrate. Here we have synthesized MSH and characterized FosM with respect to divalent metal ion activation and nucleophile selectivity. Our results indicate that FosM is a Mn(2+)-dependent FosX-type hydrase with no selectivity toward MSH or other thiols as analyzed by NMR and mass spectroscopy. | 2019 | 32952996 |
| 553 | 5 | 0.9797 | Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. The vanB gene cluster confers resistance to vancomycin but not to the related antibiotic teicoplanin, as the VanRB SB two-component regulatory system triggers expression of the glycopeptide resistance genes only in response to vancomycin. The VanRB regulator activates promoters PRB and PYB for transcription of the regulatory (vanRB SB) and resistance (vanYB WHB BXB) genes respectively. The gfpmut1 gene encoding a green fluorescent protein was fused to PYB to analyse promoter activation in single cells by fluorescence microscopy and flow cytometry. Characterization of 17 teicoplanin-resistant mutants indicated that amino acid substitutions on either side of the VanSB autophosphorylation site led to a constitutive phenotype. Substitutions in the membrane-associated domain resulted in a gain of function, as they allowed induction by teicoplanin. A vanSB null mutant expressed gfpmut1 at various levels under non-inducing conditions, and the majority of the bacteria were not fluorescent. Bacteria grown in the presence of vancomycin or teicoplanin were homogeneously fluorescent. The increase in the number of fluorescent bacteria resulted from induction in negative cells rather than from selection of a resistant subpopulation, indicating that VanRB was activated by cross-talk. Transglycosylase inhibition was probably the stimulus for the heterologous kinase, as moenomycin was also an inducer. | 1999 | 10216856 |
| 369 | 6 | 0.9795 | A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae. | 1988 | 2853096 |
| 239 | 7 | 0.9791 | Extensive differences in antifungal immune response in two Drosophila species revealed by comparative transcriptome analysis. The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response to the fungal infection, a transcriptome profile of immune-related genes was considerably different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas, the genes encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the immune-induced molecule (IM) genes showed contrary expression patterns between the two species: they were induced by the fungal infection in D. melanogaster but tended to be suppressed in D. virilis. Our transcriptome analysis also showed newly predicted immune-related genes in D. virilis. These results suggest that the innate immune system has been extensively differentiated during the evolution of these Drosophila species. | 2013 | 24151578 |
| 391 | 8 | 0.9790 | New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli. | 1989 | 2551782 |
| 6355 | 9 | 0.9789 | Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria. | 2005 | 15691931 |
| 368 | 10 | 0.9789 | Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases. | 2006 | 16461678 |
| 498 | 11 | 0.9788 | Noncanonical vancomycin resistance cluster from Desulfitobacterium hafniense Y51. The glycopeptide vancomycin is a drug of last resort for infection with gram-positive organisms, and three genes are vital to resistance: vanH, vanA, and vanX. These genes are found in a vanHAX cluster, which is conserved across pathogenic bacteria, glycopeptide antibiotic producers, and other environmental bacteria. The genome sequence of the anaerobic, gram-positive, dehalogenating bacterium Desulfitobacterium hafniense Y51 revealed a predicted vanA homolog; however, it exists in a vanAWK-murFX cluster, unlike those of other vancomycin-resistant organisms. Using purified recombinant VanA from D. hafniense Y51, we determined its substrate specificity and found it to have a 42-fold preference for D-lactate over D-alanine, confirming its activity as a D-Ala-D-Lac ligase and its annotation as VanA. Furthermore, we showed that D. hafniense Y51 is highly resistant to vancomycin, with a MIC for growth of 64 microg/ml. Finally, vanA(Dh) is expressed during growth in vancomycin, as demonstrated by reverse transcription-PCR. This finding represents a new glycopeptide antibiotic resistance gene cluster and expands the genetic diversity of resistance to this important class of antibiotic. | 2009 | 19414574 |
| 402 | 12 | 0.9787 | The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. Antibiotic resistance in C. difficile by efflux has been previously suggested. The genome of C. difficile 630 was screened for sequences encoding putative proteins homologous to NorA from Staphylococcus aureus. Four ORFs homologous to efflux genes were cloned into the pAT79 shuttle vector under the control of transcription and translation signals of Gram-positive bacteria and expressed in Enterococcus faecalis JH2-2 and S. aureus RN4220. One of these sequences, designated cme conferred resistance to ethidium bromide, safranin O, and erythromycin in E. faecalis. The three other ORFs did not confer detectable resistance in both bacteria. | 2004 | 15336408 |
| 3049 | 13 | 0.9786 | Characterisation of plasmids purified from Acetobacter pasteurianus 2374. Four cryptic plasmids pAP1, pAP2, pAP3, and pAP4 with their replication regions AP were isolated from Gram-negative bacteria Acetobacter pasteurianus 2374 and characterised by sequence analyses. All plasmids were carrying the kanamycin resistance gene. Three of four plasmids pAP2, pAP3, and pAP4 encode an enzyme that confers ampicillin resistance to host cells. Moreover, the tetracycline resistance gene was identified only in pAP2 plasmid. All plasmids are capable to coexist with each other in Acetobacter cells. On the other hand, the coexistence of more than one plasmid is excluded in Escherichia coli. The nucleotide sequence of replication regions showed significant homology. The nucleotide and protein sequence analyses of resistance genes of all plasmids were compared with transposons Tn3, Tn10, and Tn903 which revealed significant differences in the primary structure, however no functional changes of gene were obtained. | 2003 | 14511653 |
| 500 | 14 | 0.9786 | An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Erythromycin A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea. The aglycone core of erythromycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis, to generate a macrolide intermediate, 6-deoxyerythronolide B. 6-Deoxyerythronolide B is converted into erythromycin A through the action of specific hydroxylases, glycosyltransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis. Partial sequencing of this region indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly. | 1990 | 2234082 |
| 746 | 15 | 0.9786 | Novel antimicrobial 3-phenyl-4-phenoxypyrazole derivatives target cell wall lipid intermediates with low mammalian cytotoxicity. The growing crisis of antimicrobial resistance (AMR) underscores the critical need for innovative antimicrobial discoveries. Novel antibiotics targeting the bacterial cell wall remain an attractive area of research, due to their conservation and essentiality in bacteria and their absence in eukaryotic cells. Antibiotics targeting lipid II are of special interest due to the reduced potential for target modification of lipid components and their surface accessibility to inhibitors. In this study, we identified 3-phenyl-4-phenoxypyrazole analogues named PYO12 and PYO12a with bactericidal activity against gram-positive bacteria and low cytotoxicity for different types of mammalian cells. Gram-negative bacteria were resistant to PYO12 activity through extrusion of this compound via efflux pumps. Exposure to PYO12 induces expression of genes involved in resistance to antimicrobials targeting the cell wall, suggesting that PYO12 acts via binding to lipid II or other lipid intermediates involved in peptidoglycan or teichoic acid biosynthesis. Antagonism of PYO12 antibacterial activity by undecaprenyl-pyrophosphate supports the idea that PYO12 may bind to the lipid moiety of lipid II blocking the shuttling of peptidoglycan precursors across the cytoplasmic membrane. These findings open opportunities to further develop these compounds as antibiotics targeting bacterial cell wall synthesis. | 2025 | 41083642 |
| 6194 | 16 | 0.9785 | Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. Quorum sensing is a phenomenon in which bacteria sense and respond to their own population density by releasing and sensing pheromones. In gram-negative bacteria, quorum sensing is often performed by the LuxR family of transcriptional regulators, which affect phenotypes as diverse as conjugation, bioluminescence, and virulence gene expression. The gene encoding one LuxR family member, named sdiA (suppressor of cell division inhibition), is present in the Escherichia coli genome. In this report, we have cloned the Salmonella typhimurium homolog of SdiA and performed a systematic screen for sdiA-regulated genes. A 4.4-kb fragment encoding the S. typhimurium sdiA gene was sequenced and found to encode the 3' end of YecC (homologous to amino acid transporters of the ABC family), all of SdiA and SirA (Salmonella invasion regulator), and the 5' end of UvrC. This gene organization is conserved between E. coli and S. typhimurium. We determined that the S. typhimurium sdiA gene was able to weakly complement the E. coli sdiA gene for activation of ftsQAZ at promoter 2 and for suppression of filamentation caused by an ftsZ(Ts) allele. To better understand the function of sdiA in S. typhimurium, we screened 10,000 random lacZY transcriptional fusions (MudJ transposon mutations) for regulation by sdiA. Ten positively regulated fusions were isolated. Seven of the fusions were within an apparent operon containing ORF8, ORF9, rck (resistance to complement killing), and ORF11 of the S. typhimurium virulence plasmid. The three ORFs have now been named srgA, srgB, and srgC (for sdiA-regulated gene), respectively. The DNA sequence adjacent to the remaining three fusions shared no similarity with previously described genes. | 1998 | 9495757 |
| 304 | 17 | 0.9784 | Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a beta-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA--H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the CarF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel beta-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure 'self-resistance' in the Erwinia carbapenem producer. | 1997 | 9402024 |
| 448 | 18 | 0.9784 | Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. A total DNA clone bank of a strain of Xanthomonas campestris pv. malvacearum (Xcm) was constructed in the cosmid vector pSa747 and transfected into Escherichia coli. The Xcm strain carries at least nine identifiable avirulence (A) genes. Clones in E. coli were mated individually into a recombination-proficient Xcm isolate carrying no known A genes. Screening was for incompatibility on congenic cotton host lines that differ by single specific resistance (R) genes. Ten different cosmid clones conferring race-specific avirulence were recovered. In most cases, the same A gene clone was recovered independently several times. Using the congenic host lines and the merodiploid transconjugant pathogen strains, five of the A genes were shown to specifically interact, gene-for-gene, with individual R genes in the congenic cotton lines. Some A/R gene interactions appeared qualitatively different from others, suggesting that the physiological mechanism(s) of gene-for-gene specified incompatibility may be unique to the interactive gene pair. All A genes appeared to be chromosomally determined, three were found linked on a single 32-kilobase clone, and the rest were spaced more than 31 kilobases apart. Colinearity of the cosmid inserts with the Xcm recipient (carrying no known A genes) chromosome was demonstrated in two of the three tested. This and other evidence suggests that at least some A genes in bacteria may have the equivalent of virulence (a) alleles. The genetics of race specificity in this phytopathogenic bacterium appeared in all respects to be identical to that found in phytopathogenic fungi. | 1986 | 16593751 |
| 440 | 19 | 0.9783 | Nucleotide sequence analysis reveals similarities between proteins determining methylenomycin A resistance in Streptomyces and tetracycline resistance in eubacteria. Previous studies had localised the gene (mmr) for resistance to methylenomycin A (Mm) to a 2.5-kb PstI fragment in the middle of a cluster of Mm biosynthetic genes from the Streptomyces coelicolor plasmid SCP1. In this paper, the gene has been more precisely located by sub-cloning, and the nucleotide sequence of the whole fragment has been determined. The predicted mmr-specified protein (Mr 49238) would be hydrophobic, with some homology at the amino acid level to tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria. Comparisons of hydropathy plots of the amino acid sequences reinforces the idea that the proteins are similar. It is suggested that Mm resistance may be conferred by a membrane protein, perhaps controlling efflux of the antibiotic. No significant homology was detected by hybridisation analysis between mmr and a cloned oxytetracycline (OTc)-resistance gene (tetB) of the OTc producer Streptomyces rimosus, and no cross-resistance was conferred by these genes. Sequences on both sides of mmr appear to encode proteins. The direction of translation in each case would be opposite to that of mmr translation. This suggests that mmr is transcribed as a monocistronic mRNA from a bidirectional promoter. An extensive inverted repeat sequence between the stop codons of mmr and the converging gene may function as a bidirectional transcription terminator. | 1987 | 2828187 |