ILLEGITIMATE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
302400.9623Identification of ISVlu1-derived translocatable units containing optrA and/or fexA genes generated by homologous or illegitimate recombination in Lactococcus garvieae of porcine origin. The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.202438479301
81910.9590Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE.19892548057
302320.9590ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. SXT/R391 integrative conjugative elements (ICEs) are capable of self-transfer by conjugation and highly prevalent in various aquatic bacteria and Proteus species. In the present study, a novel SXT/R391 ICE, named ICEAplChn1, was identified in the multidrug resistant (MDR) Actinobacillus pleuropneumoniae strain app6. ICEAplChn1 was composed of the typical SXT/R391 backbone and insertion DNA at eight hotspots, including HS1, HS2, HS3, HS4, HS5, VRII, VRIII and a new variation region VRVI. Many of the insertion contents were not present in other reported SXT/R391 family members, including ICEApl2, a recently identified SXT/R391 ICE from a clinical isolate of A. pleuropneumoniae. Remarkably, the VRIII region had accumulated seven resistance genes tet(A), erm(42), floR, aphA6, strB (two copies), strA and sul2. Of them, erm(42) and aphA6 emerged for the first time not only in the SXT/R391 elements but also in A. pleuropneumoniae. Phylogenetic analysis showed considerable variation of the backbone sequence of ICEAplChn1, as compared to those of other SXT/R391 ICEs. A circular intermediate form of ICEAplChn1 was detected by nested PCR. However, the conjugation experiments using different bacteria as recipients failed. These findings demonstrated that SXT/R391 ICEs are able to adapt to a broader range of host bacterial species. The presence of the MDR gene cluster in ICEAplChn1 underlines that SXT/R391 ICE could serve as an important vector for the accumulation of antibiotic resistance genes.201829885796
82030.9582Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.19938380801
302140.9579Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.201121115076
81550.9575The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Three different, independently isolated mercury-resistance-conferring plasmids, pMER327/419, pMER330 and pMER05, from cultures originating from the river Mersey (UK), contain identical regulatory merR genes and transposon ends. The mer determinant from pMER327/419 contains an additional potential ORF (ORF F) located between merP and merA when compared with the archetypal Tn501. Although these plasmids confer narrow-spectrum resistance (resistance to Hg2+, but not organomercurials) their merR genes encode a potential organomercurial-sensing protein. Transposition of the mer of pMER05 into plasmid RP4 was demonstrated and, as with Tn502 and Tn5053, insertion occurred at a specific region. The sequence of pMER05 is identical at the 'left' and 'right' termini and across merR to Tn5053, which was independently isolated from the chromosome of a Xanthomonas sp. bacteria from the Khaidarkan mercury mine in Kirgizia, former Soviet Union [Kholodii et al., J. Mol. Biol. 230 (1993a) 1103-1107]. The transpositional unit of pMER05 is, like that of Tn5053, bounded by DNA homologous to the imperfect 25-bp inverted repeats (IR) of the In2 integron, which brackets antibiotic-resistance cassettes in Tn21 subgroup transposons. At one end of the transposable element, and internal to the In2-like IR, is a 38-bp IR which closely resembles the IR that bounds Tn21.19948063107
82160.9574DNA probes for studying streptothricin resistance evolution in enteric bacteria. Probes for the detection of streptothricin resistance genes have been derived from recombinant plasmids. These include the streptothricin resistance gene probe sat 1/2 derived from Tn 1826 and specific for both the sat-1 determinant of Tn 1825 and the sat-2 determinant of Tn 1826, and the probe sat D derived from and specific for the sat-1 determinant of transposon Tn 1825. A third streptothricin resistance gene probe, sat 3, represents the streptothricin resistance determinant sat-3 of the IncQ R plasmid pIE639. Hybridization studies did not reveal any sequence homology between sat-3 and the transposon-localized sat-1 and sat-2 determinants. Moreover, non of the different sat-determinants isolated from plasmids of gram negative bacteria hybridized with the analogous resistance determinant of Streptomyces noursei, which had been cloned and named nat by Krügel et al. (Gene, 1988, 62, 209-214). The sat 1/2 probe in combination with the sat D probe proved to be suitable for the identification and the differentiation of sat-1 and sat-2 determinants in different genetic environments. Streptothricin resistance genes related to those present on transposons Tn 1825 and Tn 1826 have been detected by hybridization with the probe sat 1/2 on plasmids isolated a long time ago before the application of streptothricins. The sat-3 determinant appears to be exclusively associated with the IncQ plasmid pIE639.19902166786
300370.9573IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions.201627303727
300080.9571A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Acinetobacter baumannii is an important nosocomial pathogen that often complicates treatment because of its high level of resistance to antibiotics. Though plasmids can potentially introduce various genes into bacterial strains, compared to other Gram-negative bacteria, information about the unique A. baumannii plasmid repertoire is limited. Here, whole genome sequence data was used to determine the plasmid content of strain A297 (RUH875), the reference strain for the globally disseminated multiply resistant A. baumannii clone, global clone 1(GC1). A297 contains three plasmids. Two known plasmids were present; one, pA297-1 (pRAY*), carries the aadB gentamicin, kanamycin and tobramycin resistance gene and another is an 8.7kb cryptic plasmid often found in GC1 isolates. The third plasmid, pA297-3, is 200kb and carries the sul2 sulphonamide resistance gene and strAB streptomycin resistance gene within Tn6172 and a mer mercuric ion resistance module elsewhere. pA297-3 transferred sulphonamide, streptomycin and mercuric ion resistance at high frequency to a susceptible A. baumannii recipient, and contains several genes potentially involved in conjugative transfer. However, a relaxase gene was not found. It also includes several genes encoding proteins involved in DNA metabolism such as partitioning. However, a gene encoding a replication initiation protein could not be found. pA297-3 includes two copies of a Miniature Inverted-Repeat Transposable Element (MITE), named MITE-297, bracketing a 77.5kb fragment, which contains several IS and the mer module. Several plasmids related to but smaller than pA297-3 were found in the GenBank nucleotide database. They were found in different A. baumannii clones and are wide spread. They all contain either Tn6172 or a variant in the same position in the backbone as Tn6172 in pA297-3. Some related plasmids have lost the segment between the MITE-297 copies and retain only one MITE-297. Others have segments of various lengths between two MITE-297 copies, and these can be derived from the region in pA297-3 via a deletion adjacent to IS related to IS26 such as IS1007 or IS1007-like. pA297-3 and its relatives represent a third type of conjugative Acinetobacter plasmid that contributes to the dissemination of antibiotic resistance in this species.201627601280
299990.9571Integrative and conjugative elements in streptococci can act as vectors for plasmids and translocatable units integrated via IS1216E. Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.202336933870
3036100.9570Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.200716828159
3001110.9568IS26 and the IS26 family: versatile resistance gene movers and genome reorganizers. SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.202438436262
1754120.9565Transposons Carrying the aacC2e Aminoglycoside and bla(TEM) Beta-Lactam Resistance Genes in Acinetobacter. This study examines the genetic contexts and evolutionary steps responsible for the formation of the widely spread transposon Tn6925 carrying bla(TEM) and aacC2e, which confers resistance to beta-lactam and aminoglycoside antibiotics in Gram-negative bacteria. The bla(TEM-1) and aacC2e genes were found in several transposons. They were first observed within an IS26 bounded 3.7 kb transposon (Tn6925) on several Acinetobacter baumannii plasmids located within a 4.7 kb dif module. Truncated and expanded variations of Tn6925 were found across other A. baumannii plasmids, as well as in other Gram-negative bacteria (including Vibrio cholerae). Moreover, bla(TEM-1) and aacC2e were in much larger resistance-heavy transposons including the ISAba1-bounded 24.6 kb (here called Tn6927), found in an A. baumannii chromosome. A novel ISKpn12-bounded transposon was also observed to contain bla(TEM) and aacC2e which was found interrupting Tn5393 along with an IS26 pseudo-compound transposon to form a 24.9 kb resistance island in an Acinetobacter pittii plasmid. Multiple mobile genetic elements are involved in the formation of transposon structures that circulate bla(TEM) and aacC2e. Among these, IS26 and ISAba1 appear to have played a major role in the formation and spread of these elements in the Acinetobacter species.202438593463
5847130.9565Distribution and molecular characterization of tetracycline resistance in Laribacter hongkongensis. OBJECTIVES: Laribacter hongkongensis is a newly discovered bacterium associated with gastroenteritis and found in freshwater fish. Although isolates resistant to tetracycline have been described, their resistance mechanisms have not been studied. PATIENTS AND METHODS: We describe the distribution and molecular characterization of tetracycline resistance in 48 L. hongkongensis isolates from humans and fish. RESULTS: Three human isolates and one fish isolate were resistant to tetracycline (MIC 128 mg/L) and doxycycline (MIC 8-16 mg/L) and had reduced susceptibility to minocycline (MIC 1-4 mg/L). A 3566 bp gene cluster, which contains tetR and tetA, was cloned from one of the tetracycline-resistant strains, HLHK5. While the flanking regions and 3' end of the tetA of HLHK5 were identical to the corresponding regions of a tetC island in Chlamydia suis, the tetA gene was almost identical to that of transposon Tn1721 and plasmids of gram-negative bacteria, suggesting that the tetA/tetR of HLHK5 may have arisen from illegitimate recombination. PCR and DNA sequencing showed the presence of tetA in the other three tetracycline-resistant L. hongkongensis strains. Sequencing and characterization of a 15,665 bp plasmid, pHLHK22, from strain HLHK22 revealed the presence of a similar tetA/tetR gene cluster. This novel plasmid also confers tetracycline resistance when transformed to Escherichia coli and other L. hongkongensis isolates. CONCLUSIONS: Horizontal transfer of genes, especially through Tn1721 and related plasmids, is likely an important mechanism for acquisition and dissemination of tetracycline resistance in L. hongkongensis. The present study is the first report on identification of tetA genes in bacteria of the Neisseriaceae family.200818227089
3004140.9564IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit. We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. IMPORTANCE: Resistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26 plays a major role in the acquisition and dissemination of antibiotic resistance. IS257 (IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26 can use a conservative movement mechanism in which an incoming IS26 targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26 by examining whether the reverse precise excision reaction is also catalyzed by the IS26 transposase.201526646012
5871150.9564Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. OBJECTIVES: A florfenicol-resistant Pasteurella trehalosi isolate from a calf was investigated for the presence and the location of the gene floR. METHODS: The P. trehalosi isolate 13698 was investigated for its in vitro susceptibility to antimicrobial agents and its plasmid content. A 14.9 kb plasmid, designated pCCK13698, was identified by transformation into Pasteurella multocida to mediate resistance to florfenicol, chloramphenicol and sulphonamides. The plasmid was sequenced completely and analysed for its structure and organization. RESULTS: Plasmid pCCK13698 exhibited extended similarity to plasmid pHS-Rec from Haemophilus parasuis including the region carrying the parA, repB, rec and int genes. Moreover, it revealed similarities to plasmid RSF1010 in the parts covering the mobC and repA-repC genes and to plasmid pMVSCS1 in the parts covering the sul2-catA3-strA gene cluster. Moreover, the floR gene area corresponded to that of transposon TnfloR. In addition, two complete insertion sequences were detected that were highly similar to IS1593 from Mannheimia haemolytica and IS26 from Enterobacteriaceae. Several potential recombination sites were identified that might explain the development of plasmid pCCK13698 by recombination events. CONCLUSIONS: The results of this study showed that in the bovine pathogen P. trehalosi, floR-mediated resistance to chloramphenicol and florfenicol was associated with a plasmid, which also carried functionally active genes for resistance to sulphonamides (sul2) and chloramphenicol (catA3). This is to the best of our knowledge the first report of resistance genes in P. trehalosi and only the second report of the presence of a florfenicol-resistance gene in target bacteria of the family Pasteurellaceae.200616670108
417160.9564Site-specific integration of genes into hot spots for recombination flanking aadA in Tn21 transposons. Tn21-related transposons are widespread among bacteria and carry various resistance determinants at preferential sites, hs1 and hs2. In an in vivo integrative recombination assay it was demonstrated that these hot spots direct the integration of aminoglycoside resistance genes like aadB from Klebsiella pneumoniae and aacAI from Serratia marcescens, in a recA- background. The maximum required recognition sequence which must be present in both the donor and recipient plasmids is 5' CTAAAACAAAGTTA 3' (hs2). The double-site-specific recombination occurred with a frequency of 10(-5)-10(-6). The resulting structures include not only replicon fusion products but also more complex structures carrying two copies of the donor plasmid or simply the donor gene flanked by hs elements. hs1 and hs2 are thought to act as recognition sites for a transacting site-specific recombinase. By the use of Tn21 deletion derivatives, it has been shown that the recombinase is not encoded by Tn21. This new integrative recombination system is involved in the acquisition of new genes by Tn21-related transposons and their spread among bacterial populations.19911654505
3016170.9564Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. This study presents the first complete sequence of an IncU plasmid, pFBAOT6. This plasmid was originally isolated from a strain of Aeromonas caviae from hospital effluent (Westmorland General Hospital, Kendal, United Kingdom) in September 1997 (G. Rhodes, G. Huys, J. Swings, P. McGann, M. Hiney, P. Smith, and R. W. Pickup, Appl. Environ. Microbiol. 66:3883-3890, 2000) and belongs to a group of related plasmids with global ubiquity. pFBAOT6 is 84,748 bp long and has 94 predicted coding sequences, only 12 of which do not have a possible function that has been attributed. Putative replication, maintenance, and transfer functions have been identified and are located in a region in the first 31 kb of the plasmid. The replication region is poorly understood but exhibits some identity at the protein level with replication proteins from the gram-positive bacteria Bacillus and Clostridium. The mating pair formation system is a virB homologue, type IV secretory pathway that is similar in its structural organization to the mating pair formation systems of the related broad-host-range (BHR) environmental plasmids pIPO2, pXF51, and pSB102 from plant-associated bacteria. Partitioning and maintenance genes are homologues of genes in IncP plasmids. The DNA transfer genes and the putative oriT site also exhibit high levels of similarity with those of plasmids pIPO2, pXF51, and pSB102. The genetic load region encompasses 54 kb, comprises the resistance genes, and includes a class I integron, an IS630 relative, and other transposable elements in a 43-kb region that may be a novel Tn1721-flanked composite transposon. This region also contains 24 genes that exhibit the highest levels of identity to chromosomal genes of several plant-associated bacteria. The features of the backbone of pFBAOT6 that are shared with this newly defined group of environmental BHR plasmids suggest that pFBAOT6 may be a relative of this group, but a relative that was isolated from a clinical bacterial environment rather than a plant-associated bacterial environment.200415574953
1493180.9563Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. OBJECTIVES: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection.202337714378
3018190.9563The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis.19911946749