# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9810 | 0 | 0.9874 | Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill. | 2023 | 39816646 |
| 2495 | 1 | 0.9867 | Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings. | 2019 | 30204838 |
| 9808 | 2 | 0.9866 | Understanding Recent Developments in Colistin Resistance: Mechanisms, Clinical Implications, and Future Perspectives. Colistin resistance, driven by chromosomal mutations and the spread of plasmid-mediated MCR genes, has emerged as a critical challenge in combating multidrug-resistant Gram-negative bacteria. This resistance compromises the efficacy of colistin, leading to higher treatment failure rates, prolonged hospitalizations, and increased mortality. Recent studies have highlighted key mechanisms, including lipid A modifications, that enable bacteria to evade colistin's effects. The global spread of MCR genes exacerbates the issue, underlining the need for improved diagnostics and rapid detection of resistant strains to prevent adverse patient outcomes. To combat this growing threat, a multifaceted approach is essential, involving enhanced antimicrobial stewardship, stricter infection control measures, and continued research into alternative therapies and diagnostic methods. Collaborative efforts from researchers, healthcare providers, policymakers, and the pharmaceutical industry are crucial to preserving colistin's effectiveness and mitigating the broader impact on public health. | 2025 | 41148650 |
| 9796 | 3 | 0.9866 | Bacteriophage therapy to combat MDR non-fermenting Gram-negative bacteria causing nosocomial infections: recent progress and challenges. Clinicians face significant challenges in managing nosocomial infections, primarily due to antimicrobial resistance in multidrug-resistant bacteria. Regardless of the availability of a wide range of antimicrobials in the market, resistance is escalating rampantly with every passing day, which has become a global concern. Hence, it is essential to discover new and more efficient techniques to eliminate pathogens from healthcare settings. Along with eliminating pathogenic bacteria, mitigating their antimicrobial resistance with novel methods is very essential. Recently, bacteriophages have re-emerged as a promising therapeutic alternative to treat serious infections caused by bacterial pathogens. Bacteriophages were discovered for the first time a century ago, but their usage has recently regained more attention in treating bacterial pathogens. Bacteriophages also help in mitigating the worldwide problem of antibiotic resistance, particularly augmented by Gram-negative bacteria. This review discussed the advancements in the usage of bacteriophages in combating the antimicrobial resistance of multidrug-resistant Gram-negative bacteria, with a prime focus on Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cepacia complex (Bcc), which are renowned non-fermenting Gram-negative bacteria (NFGNB) pathogens. Additionally, the effects of single phage, phage cocktails, and combination therapy with antibiotics on bacterial biofilms and polymicrobial biofilms are also discussed. | 2025 | 40478338 |
| 2510 | 4 | 0.9866 | Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia. | 2021 | 34943524 |
| 9789 | 5 | 0.9865 | Nosocomial antibiotic resistance in multiple gram-negative species: experience at one hospital with squeezing the resistance balloon at multiple sites. Increased use of antibiotics has led to the isolation of multidrug-resistant bacteria, especially in intensive care units and long-term care facilities. Resistance in specific gram-negative bacteria, including Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, is of great concern, because a growing number of reports have documented mechanisms whereby these microorganisms have become resistant to all available antibacterial agents used in therapy. Reduction in the selection of these multidrug-resistant bacteria can be accomplished by a combination of several strategies. These include having an understanding of the genetics of both innate and acquired characteristics of bacteria; knowing resistance potentials for specific antibacterials; monitoring resistance trends in bacteria designated as problematic organisms within a particular institution on a routine basis; modifying antibiotic formularies when and where needed; creating institutional education programs; and enforcing strict infection-control practices. Strategies appropriate for primary prevention of nosocomial resistance may differ from those required for control of existing epidemic or endemic resistance. | 2002 | 11797177 |
| 2496 | 6 | 0.9864 | Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii. | 2020 | 32971809 |
| 223 | 7 | 0.9863 | Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy. | 2023 | 37760679 |
| 2493 | 8 | 0.9863 | Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized. | 2025 | 40135944 |
| 8161 | 9 | 0.9863 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 4889 | 10 | 0.9862 | The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance. | 2023 | 37630472 |
| 2505 | 11 | 0.9862 | Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting. | 2006 | 16813979 |
| 2504 | 12 | 0.9862 | Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting. | 2006 | 16735148 |
| 4884 | 13 | 0.9862 | Multidrug resistance efflux pump expression in uropathogenic Gram-negative bacteria in organ transplant recipients. Urinary tract infections (UTIs) are common in healthcare settings and communities; and are predominantly caused by Gram-negative bacteria, which account for > 70% of UTI cases. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are the most common bacterial agents responsible for UTIs. The emergence of antibiotic resistance poses a challenge for UTI treatment; and efflux pump overexpression contributes to Gram-negative bacterial resistance. This comprehensive review summarizes the current understanding of multidrug resistance (MDR) efflux pump expression in prevalent Gram-negative bacteria that demonstrate resistance to antibiotics predominantly used for UTI treatment. This review examines the available data, and offers insights into the role of efflux pumps in conferring MDR to UTI-causing bacteria. Understanding these resistance mechanisms is crucial for developing effective strategies to combat antibiotic resistance in UTI management. Furthermore, this review emphasizes the need to characterize efflux pump-mediated antimicrobial resistance in solid organ transplantation cases. Solid organ transplant recipients are particularly vulnerable to UTIs caused by MDR bacteria, posing a serious threat to their health and recovery. Identifying the efflux pump profiles of these bacterial strains can guide appropriate antibiotic choices and optimize treatment outcomes in transplant recipients. By consolidating existing knowledge on efflux pump expression in antibiotic-resistant Gram-negative bacteria associated with UTIs, this review acknowledges gaps and identifies the future scope of research that should address the growing challenge of MDR UTIs, particularly in high-risk populations such as solid organ transplant recipients. | 2025 | 40452526 |
| 4852 | 14 | 0.9861 | Recent trends in antibiotic resistance in European ICUs. PURPOSE OF REVIEW: Antimicrobial resistance is an emerging problem in ICUs worldwide. As numbers of published results from national/international surveillance studies rise rapidly, the amount of new information may be overwhelming. Therefore, we reviewed recent trends in antibiotic resistance in ICUs across Europe in the past 18 months. RECENT FINDINGS: In this period, infections caused by methicillin-resistant Staphylococcus aureus appeared to stabilize (and even decrease) in some countries, and infection rates due to Gram-positive bacteria resistant to vancomycin, linezolid or daptomycin have remained low. In contrast, we are witnessing a continent-wide emergence of infections caused by multiresistant Gram-negative bacteria, especially Escherichia coli and Klebsiella pneumoniae, with easily exchangeable resistance genes located on plasmids, producing enzymes such as extended spectrum β-lactamases and carbapenamases. In the absence of new antibiotics, prevention of infections, reducing unnecessary antibiotic use, optimizing adherence to universal hygienic and infection control measures, and improving implementation of diagnostic tests are our only tools to combat this threat. SUMMARY: As the epidemiology of antibiotic resistance in ICUs is rapidly changing toward more frequently occurring epidemics and endemicity of multi and panresistant Gram-negative pathogens, better infection control and improved diagnostics will become even more important than before. | 2011 | 21986462 |
| 9799 | 15 | 0.9860 | Microbiology and drug resistance mechanisms of fully resistant pathogens. The acquisition of vancomycin resistance by Gram-positive bacteria and carbapenem resistance by Gram-negative bacteria has rendered some hospital-acquired pathogens impossible to treat. The resistance mechanisms employed are sophisticated and very difficult to overcome. Unless alternative treatment regimes are initiated soon, our inability to treat totally resistant bacteria will halt other developments in medicine. In the community, Gram-positive bacteria responsible for pneumonia could become totally resistant leading to increased mortality from this common infection, which would have a more immediate impact on our current lifestyles. | 2004 | 15451497 |
| 8160 | 16 | 0.9859 | Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation. | 2024 | 37497706 |
| 9790 | 17 | 0.9859 | Emerging antibiotic resistance: carbapenemase-producing enterobacteria. Bad new bugs, still no new drugs. Antimicrobial resistance (AMR) is a global health security threat requiring actions across government sectors and society. Many factors are involved in this phenomenon, being overuse of antibiotics, incorrect antibiotic prophylaxis, and use of antibiotics for zootechnic reasons the main causes of the increasing rate of multi-drug resistant (MDR) bacteria. The impact of resistance to antimicrobials is an important threat due also to the emergence of MDR Gram-negative bacteria resistant to carbapenems, and the lack of the research for new active molecules. The production of extended spectrum beta-lactamase enzymes has been the first threatening mechanism for Gram-negative resistance to antibiotics, which prompted the development of new classes of antibiotics such as carbapenems. Unfortunately, resistance to carbapenems developed because of multiple mechanisms including efflux pumps, porin mutations and enzyme production, being the latter particularly relevant in terms of diffusion due to the genes located within plasmids that drive their horizontal diffusion. In this scenario, antimicrobial stewardship programs (ASP) are a mandatory resource in fighting the resistance spread. The reduction of total amount of antibiotics administration in the hospital setting and guiding prescribers in the correct administration of antibiotics for the smallest period possible, at the correct dosage, can be defined as the first goals of an ASP. Anyway, in an efficacious ASP, apart from antibiotic administration, efforts must been made in ensuring the lowest probability of spreading of MDR by efficacious measures of isolation of carriers, and by offering tools for a rapid diagnosis of viral infections avoiding the administration of unnecessary antibiotics. A continuous audit of the ASP programs and a correct assessment of the allergy to drugs such as penicillin have to complete the program. Currently, only a few options are available for patients with an infection sustained by Gram-negative MDR bacteria. All the options actually available are based on the administration of colystin, an old drug whose real efficacy is reduced due to its relevant toxicity, or on the administration of recently proposed drugs such as ceftolozane-tazobactam, ceftazidime-avibactam and meropenem-vaborbactam. All these new drugs do not have a novel mechanism of action and have limited spectrum in term of activity against MDR bacteria. In conclusion, antimicrobial resistance is a global emergence and AMP is the most powerful tool actually available. Few limited options are available to treat infections due to Carbapenem Resistant Enterobacteria. Antimicrobial molecules with true novel mechanism of action are needed to win the fight against antimicrobial resistance. | 2019 | 31846984 |
| 2516 | 18 | 0.9859 | Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: resistance genes, therapeutics, and prevention - a comprehensive review. Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application. | 2024 | 38601497 |
| 2518 | 19 | 0.9858 | Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria. Gram-negative bacteria are prevalent pathogens associated with hospital-acquired infections (HAI) that are a major challenge for patient safety, especially in intensive care units [...]. | 2022 | 36014095 |