# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 556 | 0 | 0.9880 | An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn(2+) /Cd(2+) -dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells. | 2017 | 28696001 |
| 545 | 1 | 0.9874 | Characterization of the organic hydroperoxide resistance system of Brucella abortus 2308. The organic hydroperoxide resistance protein Ohr has been identified in numerous bacteria where it functions in the detoxification of organic hydroperoxides, and expression of ohr is often regulated by a MarR-type regulator called OhrR. The genes annotated as BAB2_0350 and BAB2_0351 in the Brucella abortus 2308 genome sequence are predicted to encode OhrR and Ohr orthologs, respectively. Using isogenic ohr and ohrR mutants and lacZ promoter fusions, it was determined that Ohr contributes to resistance to organic hydroperoxide, but not hydrogen peroxide, in B. abortus 2308 and that OhrR represses the transcription of both ohr and ohrR in this strain. Moreover, electrophoretic mobility shift assays and DNase I footprinting revealed that OhrR binds directly to a specific region in the intergenic region between ohr and ohrR that shares extensive nucleotide sequence similarity with so-called "OhrR boxes" described in other bacteria. While Ohr plays a prominent role in protecting B. abortus 2308 from organic hydroperoxide stress in in vitro assays, this protein is not required for the wild-type virulence of this strain in cultured murine macrophages or experimentally infected mice. | 2012 | 22821968 |
| 331 | 2 | 0.9874 | MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery. | 2010 | 21062372 |
| 527 | 3 | 0.9871 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 548 | 4 | 0.9869 | Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. The MER5 [now called the Aop1 (antioxidant protein 1) gene] was cloned as a transiently expressed gene of murine erythroleukaemia (MEL) cell differentiation and its antisense expression inhibited differentiation of MEL cells. We found that the Aop1 gene shows significant nucleotide sequence similarity to the gene coding for the C22 subunit of Salmonella typhimurium alkylhydroperoxide reductase, which is also found in other bacteria, suggesting it functions as an antioxidant protein. Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide. The human and mouse Aop1 genes are highly conserved, and they mapped to the regions syntenic between mouse and human chromosomes. Sequence comparisons with recently cloned mammalian Aop1 homologues suggest that these genes consist of a family that is responsible for regulation of cellular proliferation, differentiation and antioxidant functions. | 1995 | 7733872 |
| 6349 | 5 | 0.9864 | High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BACKGROUND: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. RESULTS: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. CONCLUSION: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study. | 2009 | 19758450 |
| 801 | 6 | 0.9863 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |
| 544 | 7 | 0.9862 | Organic Hydroperoxide Induces Prodigiosin Biosynthesis in Serratia sp. ATCC 39006 in an OhrR-Dependent Manner. The biosynthesis of prodigiosin in the model prodigiosin-producing strain, Serratia sp. ATCC 39006, is significantly influenced by environmental and cellular signals. However, a comprehensive regulatory mechanism for this process has not been well established. In the present study, we demonstrate that organic hydroperoxide activates prodigiosin biosynthesis in an OhrR-dependent manner. Specifically, the MarR-family transcriptional repressor OhrR (Ser39006_RS05455) binds to its operator located far upstream of the promoter region of the prodigiosin biosynthesis operon (319 to 286 nucleotides [nt] upstream of the transcription start site) and negatively regulates the expression of prodigiosin biosynthesis genes. Organic hydroperoxide disassociates the binding between OhrR and its operator, thereby promoting the prodigiosin production. Moreover, OhrR modulates the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide by regulating the transcription of its own gene and the downstream cotranscribed ohr gene. These results demonstrate that OhrR is a pleiotropic repressor that modulates the prodigiosin production and the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide stress. IMPORTANCE Bacteria naturally encounter various environmental and cellular stresses. Organic hydroperoxides generated from the oxidation of polyunsaturated fatty acids are widely distributed and usually cause lethal oxidative stress by damaging cellular components. OhrR is known as a regulator that modulates the resistance of bacteria to organic hydroperoxide stress. In the current study, organic hydroperoxide disassociates OhrR from the promoter of prodigiosin biosynthesis gene cluster, thus promoting transcription of pigA to -O genes. In this model, organic hydroperoxide acts as an inducer of prodigiosin synthesis in Serratia sp. ATCC 39006. These results improve our understanding of the regulatory network of prodigiosin synthesis and serve as an example for identifying the cross talk between the stress responses and the regulation of secondary metabolism. | 2022 | 35044847 |
| 547 | 8 | 0.9861 | Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. | 2007 | 17586628 |
| 6158 | 9 | 0.9859 | Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. Porphyromonas gingivalis, the causative agent of adult periodontitis, must maintain nitric oxide (NO) homeostasis and surmount nitric oxide stress from host immune responses or other oral bacteria to survive in the periodontal pocket. To determine the involvement of a putative hydroxylamine reductase (PG0893) and a putative nitrite reductase-related protein (PG2213) in P. gingivalis W83 NO stress resistance, genes encoding those proteins were inactivated by allelic exchange mutagenesis. The isogenic mutants P. gingivalis FLL455 (PG0893ermF) and FLL456 (PG2213ermF) were black pigmented and showed growth rates and gingipain and hemolytic activities similar to those of the wild-type strain. P. gingivalis FLL455 was more sensitive to NO than the wild type. Complementation of P. gingivalis FLL455 with the wild-type gene restored the level of NO sensitivity to a level similar to that of the parent strain. P. gingivalis FLL455 and FLL456 showed sensitivity to oxidative stress similar to that of the wild-type strain. DNA microarray analysis showed that PG0893 and PG2213 were upregulated 1.4- and 2-fold, respectively, in cells exposed to NO. In addition, 178 genes were upregulated and 201 genes downregulated more than 2-fold. The majority of these modulated genes were hypothetical or of unknown function. PG1181, predicted to encode a transcriptional regulator, was upregulated 76-fold. Transcriptome in silico analysis of the microarray data showed major metabolomic variations in key pathways. Collectively, these findings indicate that PG0893 and several other genes may play an important role in P. gingivalis NO stress resistance. | 2012 | 22247513 |
| 558 | 10 | 0.9859 | Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria. | 2005 | 16356850 |
| 126 | 11 | 0.9859 | Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite D,L-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of L-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase. | 2005 | 15668756 |
| 656 | 12 | 0.9859 | HflXr, a homolog of a ribosome-splitting factor, mediates antibiotic resistance. To overcome the action of antibiotics, bacteria have evolved a variety of different strategies, such as drug modification, target mutation, and efflux pumps. Recently, we performed a genome-wide analysis of Listeria monocytogenes gene expression after growth in the presence of antibiotics, identifying genes that are up-regulated upon antibiotic treatment. One of them, lmo0762, is a homolog of hflX, which encodes a heat shock protein that rescues stalled ribosomes by separating their two subunits. To our knowledge, ribosome splitting has never been described as an antibiotic resistance mechanism. We thus investigated the role of lmo0762 in antibiotic resistance. First, we demonstrated that lmo0762 is an antibiotic resistance gene that confers protection against lincomycin and erythromycin, and that we renamed hflXr (hflX resistance). We show that hflXr expression is regulated by a transcription attenuation mechanism relying on the presence of alternative RNA structures and a small ORF encoding a 14 amino acid peptide containing the RLR motif, characteristic of macrolide resistance genes. We also provide evidence that HflXr is involved in ribosome recycling in presence of antibiotics. Interestingly, L. monocytogenes possesses another copy of hflX, lmo1296, that is not involved in antibiotic resistance. Phylogenetic analysis shows several events of hflXr duplication in prokaryotes and widespread presence of hflXr in Firmicutes. Overall, this study reveals the Listeria hflXr as the founding member of a family of antibiotic resistance genes. The resistance conferred by this gene is probably of importance in the environment and within microbial communities. | 2018 | 30545912 |
| 657 | 13 | 0.9859 | Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria. | 2020 | 31871194 |
| 549 | 14 | 0.9858 | Extracytoplasmic function sigma factor σ(D) confers resistance to environmental stress by enhancing mycolate synthesis and modifying peptidoglycan structures in Corynebacterium glutamicum. Mycolates are α-branched, β-hydroxylated, long-chain fatty acid specifically synthesized in bacteria in the suborder Corynebacterineae of the phylum Actinobacteria. They form an outer membrane, which functions as a permeability barrier and confers pathogenic mycobacteria to resistance to antibiotics. Although the mycolate biosynthetic pathway has been intensively studied, knowledge of transcriptional regulation of genes involved in this pathway is limited. Here, we report that the extracytoplasmic function sigma factor σ(D) is a key regulator of the mycolate synthetic genes in Corynebacterium glutamicum in the suborder. Chromatin immunoprecipitation with microarray analysis detected σ(D) -binding regions in the genome, establishing a consensus promoter sequence for σ(D) recognition. The σ(D) regulon comprised acyl-CoA carboxylase subunits, acyl-AMP ligase, polyketide synthase and mycolyltransferases; they were involved in mycolate synthesis. Indeed, deletion or overexpression of sigD encoding σ(D) modified the extractable mycolate amount. Immediately downstream of sigD, rsdA encoded anti-σ(D) and was under the control of a σ(D) -dependent promoter. Another σ(D) regulon member, l,d-transpeptidase, conferred lysozyme resistance. Thus, σ(D) modifies peptidoglycan cross-linking and enhances mycolate synthesis to provide resistance to environmental stress. | 2018 | 29148103 |
| 117 | 15 | 0.9858 | Acyl depsipeptide (ADEP) resistance in Streptomyces. ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required. The consequent uncontrolled protein degradation in the cell appears to kill the ADEP-treated bacteria. ADEP is produced by Streptomyces hawaiiensis. Most sequenced genomes of Streptomyces have five clpP genes, organized as two distinct bicistronic operons, clpP1clpP2 and clpP3clpP4, and a single clpP5 gene. We investigated whether the different Clp proteases are all sensitive to ADEP. We report that ClpP1 is a target of ADEP whereas ClpP3 is largely insensitive. In wild-type Streptomyces lividans, clpP3clpP4 expression is constitutively repressed and the reason for the maintenance of this operon in Streptomyces has been elusive. ClpP activity is indispensable for survival of actinomycetes; we therefore tested whether the clpP3clpP4 operon, encoding an ADEP-insensitive Clp protease, contributes to a mechanism of ADEP resistance by target substitution. We report that in S. lividans, inactivation of ClpP1ClpP2 production or protease activity is indeed a mode of resistance to ADEP although it is neither the only nor the most frequent mode of resistance. The ABC transporter SclAB (orthologous to the Streptomyces coelicolor multidrug resistance pump SCO4959-SCO4960) is also able to confer ADEP resistance, and analysis of strains with sclAB deletions indicates that there are also other mechanisms of ADEP resistance. | 2011 | 21636652 |
| 6355 | 16 | 0.9858 | Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P. syringae and E. coli, a novel open reading frame, copL, was found to be required for copper-inducible expression of the downstream multicopper oxidase copA in X. axonopodis. copL encodes a predicted protein product of 122 amino acids that is rich in histidine and cysteine residues, suggesting a possible direct interaction with copper. Deletions or frameshift mutations within copL, as well as an amino acid substitution generated at the putative start codon of copL, caused a loss of copper-inducible transcriptional activation of copA. A nonpolar insertion of a kanamycin resistance gene in copL resulted in copper sensitivity in the wild-type strain. However, repeated attempts to complement copL mutations in trans failed. Analysis of the genomic sequence databases shows that there are copL homologs upstream of copAB genes in X. axonopodis pv. citri, X. campestris pv. campestris, and Xylella fastidiosa. The cloned promoter area upstream of copA in X. axonopodis pv. vesicatoria did not function in Pseudomonas syringae or in E. coli, nor did the P. syringae cop promoter function in Xanthomonas. However, a transcriptional fusion of the Xanthomonas cop promoter with the Pseudomonas copABCDRS was able to confer resistance to copper in Xanthomonas, showing divergence in the mechanisms of regulation of the resistance to copper in phytopathogenic bacteria. | 2005 | 15691931 |
| 543 | 17 | 0.9858 | OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H(2)O(2) A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H(2)O(2) RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H(2)O(2) Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H(2)O(2) Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H(2)O(2) or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response. | 2017 | 28138024 |
| 6348 | 18 | 0.9858 | Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. A polar bacterium was isolated from Arctic sea sediments and identified as Psychromonas artica, based on 16S rDNA sequence. Psychromonas artica KOPRI 22215 has an optimal growth temperature of 10 degrees C and a maximum growth temperature of 25 degrees C, suggesting this bacterium is a psychrophile. Cold shock proteins (Csps) are induced upon temperature downshift by more than 10 degrees C. Functional studies have researched mostly Csps of a mesophilic bacterium Escherichia coli, but not on those of psychrophilic bacteria. In an effort to understand the molecular mechanisms of psychrophilic bacteria that allow it withstand freezing environments, we cloned a gene encoding a cold shock protein from P. artica KOPRI 22215 (CspA(Pa)) using the conserved sequences in csp genes. The 204 bp-long ORF encoded a protein of 68 amino acids, sharing 56% homology to previously reported E. coli CspA protein. When CspA(Pa) was overexpressed in E. coli, it caused cell growth-retardation and morphological elongation. Interestingly, overexpression of CspA(Pa) drastically increased the host's cold-resistance by more than ten times, suggesting the protein aids survival in polar environments. | 2010 | 20169403 |
| 655 | 19 | 0.9858 | Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. The mtrCDE-encoded efflux pump of Neisseria gonorrhoeae provides gonococci with a mechanism to resist structurally diverse antimicrobial hydrophobic agents (HAs). Strains of N. gonorrhoeae that display hypersusceptibility to HAs often contain mutations in the efflux pump genes, mtrCDE. Such strains frequently contain a phenotypically suppressed mutation in mtrR, a gene that encodes a repressor (MtrR) of mtrCDE gene expression, and one that would normally result in HA resistance. We have recently examined HA-hypersusceptible clinical isolates of gonococci that contain such phenotypically suppressed mtrR mutations, in order to determine whether genes other than mtrCDE are involved in HA resistance. These studies led to the discovery of a gene that we have designated mtrF, located downstream of the mtrR gene, that is predicted to encode a 56.1 kDa cytoplasmic membrane protein containing 12 transmembrane domains. Expression of mtrF was enhanced in a strain deficient in MtrR production, indicating that this gene, together with the closely linked mtrCDE operon, is subject to MtrR-dependent transcriptional control. Orthologues of mtrF were identified in a number of diverse bacteria. Except for the AbgT protein of Escherichia coli, their products have been identified as hypothetical proteins with unknown function(s). Genetic evidence is presented that MtrF is important in the expression of high-level detergent resistance by gonococci. We propose that MtrF acts in conjunction with the MtrC-MtrD-MtrE efflux pump, to confer on gonococci high-level resistance to certain HAs. | 2003 | 12493784 |