# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6131 | 0 | 0.8859 | Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance. | 2017 | 28705984 |
| 6721 | 1 | 0.8840 | Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Bacteria can develop resistance to antibiotics, but little is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled 3 automated endoscope reprocessors in the United States using aldehydes for endoscope disinfection. Bacterial contamination was found after disinfection in all automated endoscope reprocessors, and some mycobacteria isolates demonstrated significant resistance to glutaraldehyde and ortho-phthaldehyde disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients. | 2012 | 22325730 |
| 101 | 2 | 0.8822 | The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD(50) of 2 × 10² CFU, whereas the LD(50) for the unencapsulated FP23 was greater than 10⁷ CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing. | 2010 | 20615478 |
| 3071 | 3 | 0.8820 | Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera. | 2023 | 37835689 |
| 3308 | 4 | 0.8817 | Effect of a karst system (France) on extended spectrum beta-lactamase (ESBL)-producing Escherichia coli. Karst aquifers are an important water resource worldwide particularly exposed to anthropogenic pollution, including antibiotic-resistance. The release of antibiotic-resistant bacterial pathogens in the environment is a major public health challenge worldwide. In this One Health study, we aimed to determine the effect of karst on antibiotic-resistant bacteria. For this purpose, we determined the concentrations of extended-spectrum β-lactamases-producing Escherichia coli (ESBL-Ec) for 92 weeks in a rural karst hydrosystem providing drinking water. ESBL-Ec isolates (n = 130) were sequenced by whole genome sequencing. We analysed the isolates at different levels of granularity, i.e., phylogroup, sequence type, presence of antibiotic-resistance genes, mutations conferring antibiotic-resistance, and virulence genes. The ESBL-Ec concentrations were spatially and temporally heterogeneous in the studied karst hydrosystem. ESBL-Ec isolates survived in the karst and their concentrations were mostly explained by the hydrodynamic of the hydrosystem. We demonstrate that the studied karst has no filtration effect on ESBL-Ec, either quantitatively (i.e., in the ESBL-Ec concentrations) or qualitatively (i.e., in the genetic characteristics of ESBL-Ec isolates). | 2023 | 36642030 |
| 108 | 5 | 0.8796 | RtcB2-PrfH Operon Protects E. coli ATCC25922 Strain from Colicin E3 Toxin. In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity. | 2022 | 35742896 |
| 6167 | 6 | 0.8796 | Differential gene expression in Escherichia coli during aerosolization from liquid suspension. Comparative transcriptome analysis was used to determine the differentially expressed genes in Escherichia coli during aerosolization from liquid suspension. Isogenic mutant studies were then used to examine the potential part played by some of these genes in bacterial survival in the air. Bioaerosols were sampled after 3 min of nebulization, which aerosolized the bacteria from the liquid suspension to an aerosol chamber (A0), and after further 30 min of airborne suspension in the chamber (A30). Bacteria at A0 showed 65 differentially expressed genes (30 downregulated and 35 upregulated) as compared to the original bacteria in the nebulizer. Droplet evaporation models predicted a drop in temperature in the bioaerosols, which coincides with the change in the expression of cold shock protein genes-cspB and cspG in the bacteria. The most notable group of differentially expressed genes was sorbitol transport and metabolism genes (srlABDEMR). Other genes associated with osmotic stress, nutrient limitation, DNA damage, and other stresses were differentially expressed in the bacteria at A0. After further airborne suspension, one gene (ypfM, which encodes a hypothetical protein with unknown function) was downregulated in the bacteria at A30 as compared to those at A0. Finally, isogenic mutants with either the dps or srlA gene deleted (both genes were upregulated at A0) had lower survival than the parental strain, which is a sign of their potential ability to protect the bacteria in the air. | 2018 | 29808326 |
| 3671 | 7 | 0.8795 | Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2016 | 27287338 |
| 8639 | 8 | 0.8791 | Toad's survivability and soil microbiome alterations impacted via individual abundance. Artificial breeding is a valid strategy for the reverse of current extinction tendency in wild population of amphibian like toads. Considering public health, an alternative to antibiotics is demanded for ameliorating survival of toads during the culture period. Relying on the cognition of probiotics or antagonistic bacteria, the present work investigated viability and soil microorganism variations induced by distribution characteristic on toads using high-throughput sequencing technology. Comparison and analysis of soil metagenome from clustered and depopulated groups distinguished by toad behavior showed differences of bacterial community composition (e.g., Proteobacteria bacterium TMED72 and Nannocystis exedens) and antibiotic resistance genes involving antibiotic efflux and inactivation (e.g., mdtB and acrF). There were 18 and 10 distribution-typical genes independently enriched in Proteobacteria bacterium TMED72 and bacterium TMED88 of clustered group and Nannocystis exedens of depopulated group. In Nannocystis exedens, one of the distribution-typical genes was annotated as 6-phosphogluconate dehydrogenase acting role on bacterial growth restriction. It implied that, compared with the group emerging rare traces, the reduction of soil bacteria which possess genes retarding bacterial growth putatively impairs competitiveness to pathogenic bacteria and results in poor survivability of toads under clustering behavior. With the co-occurrence of virulence genes, more evidences are needed on the antagonistic bacteria Nannocystis exedens as antibiotic substitute. | 2025 | 40478395 |
| 542 | 9 | 0.8789 | Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs. | 2002 | 12117925 |
| 822 | 10 | 0.8789 | Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains. | 2013 | 23148020 |
| 593 | 11 | 0.8787 | Vitellogenins increase stress resistance of Caenorhabditis elegans after Photorhabdus luminescens infection depending on the steroid-signaling pathway. Resistance against environmental stress is a crucial factor in determining the lifespan of organisms. A central role herein has been recently attributed to the transport and storage of lipids with the vitellogenin family emerging as a potential key factor. Here we show that the knockdown of one out of five functional vitellogenin genes, encoding apolipoprotein B homologues, results in a reduced survival of the nematode Caenorhabditis elegans at 37 °C subsequent to infection with the bacterial pathogen Photorhabdus luminescens. An active steroid-signaling pathway, including supply of cholesterol by vitellogenins, steroid ligand formation by the cytochrome P450 dependent DAF-9, and activation of the nuclear hormone receptor DAF-12, in the presence of pathogenic bacteria was associated with reduced nuclear translocation of the forkhead transcription factor DAF-16 and increased antioxidative capacity. Taken together, the study provides functional evidence for a crucial role of vitellogenins and the steroid-signaling pathway in determination of resistance against bacteria. | 2013 | 23727258 |
| 6133 | 12 | 0.8787 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 823 | 13 | 0.8786 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 5188 | 14 | 0.8783 | Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context. | 2024 | 38747071 |
| 9367 | 15 | 0.8782 | Bacterial heterozygosity promotes survival under multidrug selection. Although bacterial cells typically contain a single chromosome, some species are naturally polyploid and carry multiple copies of their chromosome. Polyploid chromosomes can be identical or heterogeneous, the latter giving rise to bacterial heterozygosity. Although the benefits of heterozygosity are well studied in eukaryotes, its consequences in bacteria are less understood. Here, we examine this question in the context of antibiotic resistance to understand how bacterial genomic heterozygosity affects bacterial survival. Using a cell-wall-deficient model system in the actinomycete Kitasatospora viridifaciens, we found that heterozygous cells that contain different chromosomes expressing different antibiotic resistance markers persist across a broad range of antibiotic concentrations. Recombinant cells containing the same resistance genes on a single chromosome also survive these conditions, but these cells pay a significant fitness cost due to the constitutive expression of these genes. By contrast, heterozygous cells can mitigate these costs by flexibly adjusting the ratio of their different chromosomes, thereby allowing rapid responses in temporally and spatially variable environments. Our results provide evidence that bacterial heterozygosity can increase adaptive plasticity in bacterial cells in a similar manner to the evolutionary benefits provided by multicopy plasmids in bacteria. | 2025 | 40037350 |
| 6722 | 16 | 0.8782 | Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new. | 1986 | 2873172 |
| 6391 | 17 | 0.8781 | Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Accurate quantification of the airborne antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is critically important to assess their health risks. However, the currently widely used high-volume filter sampler (HVFS) often causes the desiccation of the sample, interfering with subsequent bacterial culture. To overcome this limitation, a high-volume tandem liquid impinging sampler (HVTLIS) was developed and optimized to investigate the airborne bacterial microbiomes and antibiotic resistomes under different weathers in Tianjin, China. Results revealed that HVTLIS can capture significantly more diverse culturable bacteria, ARB, and ARGs than HVFS. Compared with fine and hazy weathers, dusty weather had significantly more diverse and abundant airborne bacteria, ARGs, and human opportunistic pathogens with the resistance to last-resort antibiotics of carbapenems and polymyxin B, implicating a potential human health threat of dusty bioaerosols. Intriguingly, we represented the first report of Saccharibacteria predominance in the bioaerosol, demonstrating that the potential advantage of HVTLIS in collecting airborne microbes. | 2020 | 32438084 |
| 9108 | 18 | 0.8780 | Learning from losers. Bacteria can overcome environmental challenges by killing nearby bacteria and incorporating their DNA. | 2017 | 29148975 |
| 723 | 19 | 0.8779 | Ail and PagC-related proteins in the entomopathogenic bacteria of Photorhabdus genus. Among pathogenic Enterobacteriaceae, the proteins of the Ail/OmpX/PagC family form a steadily growing family of outer membrane proteins with diverse biological properties, potentially involved in virulence such as human serum resistance, adhesion and entry into eukaryotic culture cells. We studied the proteins Ail/OmpX/PagC in the bacterial Photorhabdus genus. The Photorhabdus bacteria form symbiotic complexes with nematodes of Heterorhabditis species, associations which are pathogenic to insect larvae. Our phylogenetic analysis indicated that in Photorhabdus asymbiotica and Photorhabdus luminescens only Ail and PagC proteins are encoded. The genomic analysis revealed that the Photorhabdus ail and pagC genes were present in a unique copy, except two ail paralogs from P. luminescens. These genes, referred to as ail1Pl and ail2Pl, probably resulted from a recent tandem duplication. Surprisingly, only ail1Pl expression was directly controlled by PhoPQ and low external Mg2+ conditions. In P. luminescens, the magnesium-sensing two-component regulatory system PhoPQ regulates the outer membrane barrier and is required for pathogenicity against insects. In order to characterize Ail functions in Photorhabdus, we showed that only ail2Pl and pagCPl had the ability, when expressed into Escherichia coli, to confer resistance to complement in human serum. However no effect in resistance to antimicrobial peptides was found. Thus, the role of Ail and PagC proteins in Photorhabdus life cycle is discussed. | 2014 | 25333642 |