# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8747 | 0 | 0.9670 | An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker. The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus. | 2023 | 37719271 |
| 8748 | 1 | 0.9636 | Heterologous Expression of the Constitutive Disease Resistance 2 and 8 Genes from Poncirus trifoliata Restored the Hypersensitive Response and Resistance of Arabidopsis cdr1 Mutant to Bacterial Pathogen Pseudomonas syringae. Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. In the United States, this disease is associated with a phloem-restricted bacterium, Candidatus Liberibacter asiaticus. Commercial citrus cultivars are susceptible to HLB, but Poncirus trifoliata, a close relative of Citrus, is highly tolerant of HLB. Isolating P. trifoliata gene(s) controlling its HLB tolerance followed by expressing the gene(s) in citrus is considered a potential cisgenic approach to engineering citrus for tolerance to HLB. Previous gene expression studies indicated that the constitutive disease resistance (CDR) genes in P. trifoliata (PtCDRs) may play a vital role in its HLB tolerance. This study was designed to use Arabidopsis mutants as a model system to confirm the function of PtCDRs in plant disease resistance. PtCDR2 and PtCDR8 were amplified from P. trifoliata cDNA and transferred into the Arabidopsis cdr1 mutant, whose resident CDR1 gene was disrupted by T-DNA insertion. The PtCDR2 and PtCDR8 transgenic Arabidopsis cdr1 mutant restored its hypersensitive response to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2. The defense marker gene PATHOGENESIS RELATED 1 (PR1) expressed at much higher levels in the PtCDR2 or PtCDR8 transgenic cdr1 mutant than in the non-transgenic cdr1 mutant with or without pathogen infection. Multiplication of Pst DC3000 bacteria in Arabidopsis was inhibited by the expression of PtCDR2 and PtCDR8. Our results showed that PtCDR2 and PtCDR8 were functional in Arabidopsis and played a positive role in disease resistance and demonstrated that Arabidopsis mutants can be a useful alternate system for screening Poncirus genes before making the time-consuming effort to transfer them into citrus, a perennial woody plant that is highly recalcitrant for Agrobacterium or biolistic-mediated transformation. | 2020 | 32629813 |
| 8750 | 2 | 0.9614 | MicroRNA miR171b Positively Regulates Resistance to Huanglongbing of Citrus. Huanglongbing (HLB) is one of the most severe citrus diseases in the world, causing huge economic losses. However, efficient methods of protecting citrus from HLB have not yet been developed. microRNA (miRNA)-mediated regulation of gene expression is a useful tool to control plant diseases, but the miRNAs involved in regulating resistance to HLB have not yet been identified. In this study, we found that miR171b positively regulated resistance to HLB in citrus. Upon infection with HLB bacteria, the bacteria were detected in the second month in the control plants. However, in the miR171b-overexpressing transgenic citrus plants, the bacteria could not be detected until the 24th month. RNA-seq data indicated that multiple pathways, such as photosynthesis, plant-pathogen interaction, the MAPK signaling pathway, etc., might be involved in improving the resistance to HLB in miR171b-overexpressing plants compared with the control. Finally, we determined that miR171b could target SCARECROW-like (SCL) genes to downregulate their expression, which then led to promoted resistance to HLB stress. Collectively, our results demonstrate that miR171b plays a positive regulatory role in resistance to citrus HLB, and provides a new insight into the role of miRNAs in the adaptation of citrus to HLB stress. | 2023 | 36982808 |
| 9 | 3 | 0.9589 | Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea. | 2011 | 21726385 |
| 8764 | 4 | 0.9589 | Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB. | 2017 | 27866312 |
| 8746 | 5 | 0.9585 | Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops. | 2023 | 36835053 |
| 8745 | 6 | 0.9577 | Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Bacterial attack is a serious agricultural problem for growth of rice seedlings in the nursery and field. The thionins purified from seed and etiolated seedlings of barley are known to have antimicrobial activity against necrotrophic pathogens; however, we found that no endogenous rice thionin genes alone are enough for resistance to two major seed-transmitted phytopathogenic bacteria, Burkholderia plantarii and B. glumae, although rice thionin genes constitutively expressed in coleoptile, the target organ of the bacteria. Thus, we isolated thionin genes from oat, one of which was overexpressed in rice. When wild-type rice seed were germinated with these bacteria, all seedlings were wilted with severe blight. In the seedling infected with B. plantarii, bacterial staining was intensively marked around stomata and intercellular spaces. However, transgenic rice seedlings accumulating a high level of oat thionin in cell walls grew almost normally with bacterial staining only on the surface of stomata. These results indicate that the oat thionin effectively works in rice plants against bacterial attack. | 2002 | 12059099 |
| 8749 | 7 | 0.9570 | Analysis of Defense-Related Gene Expression in Citrus Hybrids Infected by Xylella fastidiosa. Resistance to Xylella fastidiosa was evaluated in 264 hybrids of crosses between Murcott tangor (Citrus reticulata × Citrus sinensis) and Pera sweet orange (C. sinensis) under field conditions. Uninfected hybrids were grafted with buds collected from Pera sweet orange plants infected with X. fastidiosa, forming a plant with two scions (i.e., hybrid branches and Pera sweet orange branches). From these plants, we chose 10 genotypes with three biological replicates. We evaluated gene expression, bacterial multiplication, and citrus variegated chlorosis (CVC) symptom development in both scions. X. fastidiosa was not detected in most hybrid scions and none showed disease symptoms. In contrast, all Pera sweet orange scions were infected with X. fastidiosa and expressed symptoms of CVC. We quantified the expression of 12 defense-related genes by qPCR comparing resistant to susceptible scions. We suggest that some of these genes are involved in resistance of the hybrids to X. fastidiosa, since their expression was significantly higher in the resistant hybrid scions than in tolerant hybrids and scions originated from CVC symptomatic Pera sweet orange buds. However, we note that these data should be interpreted carefully, as the plant genotypes tested are related but necessarily distinct (hybrids of C. reticulata and C. sinensis, in relation to a C. sinensis control). A principal component analysis revealed a relationship between the expression of these genes and hybrid scions, and between scions that originated from infected buds and the presence of the bacteria and plant symptoms. Multiyear field trials are necessary to develop plant resistance to X. fastidiosa. While the experimental design used here had limitations, it allowed us to identify a set of genes potentially involved in Citrus sp. resistance to this pathogen. Future work on the role of these genes in plant defenses to X. fastidiosa infection is necessary to confirm their importance in the displayed resistance phenotype. | 2019 | 30480473 |
| 8447 | 8 | 0.9559 | Deep R-gene discovery in HLB resistant wild Australian limes uncovers evolutionary features and potentially important loci for hybrid breeding. Huanglongbing (HLB) is a devastating citrus disease that threatens the citrus industry worldwide. HLB is associated with the bacteria Candidatus Liberibacter asiaticus (CLas) and as of today, there are no tools for economically viable disease management. Several wild Australian limes have been identified to be HLB resistant and their resistance is hypothesized to be conferred by resistance genes (R-genes), which mediate pathogen-specific defense responses. The aim of this study was to gain insight into the genomic features of R-genes in Australian limes, in comparison to susceptible citrus cultivars. In this study, we used five citrus genomes, including three Australian limes (Citrus australasica, C. glauca and C. inodora) and two cultivated citrus species (C. clementina and C. sinensis). Our results indicate up to 70% of the R-genes were identified in the unannotated regions in the original genome annotation of each species, owing to the use of a R-gene specific pipeline. Surprisingly, the two cultivated species harbored 15.8 to 104% more R-genes than the Australian limes. In all species, over 75% of the R-genes occurred in clusters and nearly 80% were concentrated in three chromosomes (Chr3, 5 and 7). The syntenic R-gene based phylogenic classification grouped the five species according to their HLB-resistance levels, reflecting the association between these R-genes and their distinct Australian origins. Domain structure analysis revealed substantial similarities in the R-genes between wild Australian limes and cultivated citrus. Investigation of chromosomal sites underlying Australian specific R genes revealed diversifying selection signatures on several chromosomal regions. The findings in this study will aid in the development of tools for genome-assisted breeding for HLB-resistant varieties. | 2024 | 39963358 |
| 13 | 9 | 0.9552 | Streptomyces sp. JCK-6131 Protects Plants Against Bacterial and Fungal Diseases via Two Mechanisms. Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31-10% and 0.31-1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance. | 2021 | 34603354 |
| 8731 | 10 | 0.9547 | Isolation of Potato Endophytes and Screening of Chaetomium globosum Antimicrobial Genes. Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production. | 2022 | 35563004 |
| 15 | 11 | 0.9547 | Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii. Bacterial wilt (BW) caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato (Solanum tuberosum) crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At) pattern recognition receptor elongation factor-Tu (EF-Tu) receptor (EFR) recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18) to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum. Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá), as well as in a breeding potato line (09509.6) in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum, with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato. | 2017 | 29033958 |
| 42 | 12 | 0.9546 | Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants. | 2009 | 19522564 |
| 8756 | 13 | 0.9543 | Genetic Insights Into Pathways Supporting Optimized Biological Nitrogen Fixation in Chickpea and Their Interaction With Disease Resistance Breeding. In chickpea (Cicer arietinum), a globally important grain legume, improvements in yield stability are required to address food security and agricultural land loss. One approach is to improve both nutrient acquisition through symbiosis with rhizobial bacteria and biotic stress resistance. To support the simultaneous selection of multiple beneficial traits, we sought to identify quantitative trait loci (QTL) and genes linked to improved plant-microbe symbiosis both under symbiosis-promotive growth conditions and when pathogens are present. Our aims were to use the chickpea-Mesorhizobium rhizobial model to identify QTL associated with biological nitrogen fixation (BNF) and nutrient acquisition and understand factors promotive of sustained BNF under biotic stress through the impact of Phytophthora root rot (PRR) on BNF across chickpea genotypes on host gene expression. Using two chickpea × C. echinospermum recombinant inbred line (RIL) populations, we identified QTL associated with BNF and several associated with macro- and micro-nutrient status of chickpea. From within a set of the most PRR-resistant RIL (n = 70), we successfully identified RIL with both high PRR resistance and N sourced from BNF. In conditions of the tripartite (host:rhizobia:pathogen) interaction, while there was no consistent pathogen impact on the abundance of Mesorhizobium in nodules, PRR-resistant genotypes maintained a higher activity of their N-assimilation genes, while susceptible genotypes repressed these genes. This improved understanding of the genetic support of BNF in chickpea will allow selection for material that maintains higher BNF and is more disease resistant, which together may improve yield stability in chickpea. | 2025 | 40962294 |
| 8762 | 14 | 0.9542 | Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)-an Updated Review. Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world's population. Diseases caused by bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses. Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice production worldwide. Due to the economic importance, extensive genetic and genomic studies have been conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we summarize the recent advances in studies on interactions between rice and the two pathogens through these R genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum resistance to Xanthomonas oryzae based on the published studies are also discussed. | 2020 | 31915945 |
| 30 | 15 | 0.9540 | RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. | 2013 | 24090429 |
| 90 | 16 | 0.9539 | Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology. | 2012 | 22299054 |
| 22 | 17 | 0.9539 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 8727 | 18 | 0.9539 | Transcriptome Analysis of Rice Near-Isogenic Lines Inoculated with Two Strains of Xanthomonas oryzae pv. oryzae, AH28 and PXO99(A). Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a major threat to rice production and food security. Exploring new resistance genes and developing varieties with broad-spectrum and high resistance has been a key focus in rice disease resistance research. In a preliminary study, rice cultivar Fan3, exhibiting high resistance to PXO99(A) and susceptibility to AH28, was developed by enhancing the resistance of Yuehesimiao (YHSM) to BB. This study performed a transcriptome analysis on the leaves of Fan3 and YHSM following inoculation with Xoo strains AH28 and PXO99(A). The analysis revealed significant differential expression of 14,084 genes. Among the transcription factor (TF) families identified, bHLH, WRKY, and ERF were prominent, with notable differences in the expression of OsWRKY62, OsWRKY76, and OsbHLH6 across samples. Over 100 genes were directly linked to disease resistance, including nearly 30 NBS-LRR family genes. Additionally, 11 SWEET family protein genes, over 750 protein kinase genes, 63 peroxidase genes, and eight phenylalanine aminolysase genes were detected. Gene ontology (GO) analysis showed significant enrichment in pathways related to defense response to bacteria and oxidative stress response. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis and diterpenoid biosynthesis pathways. Gene expression results from qRT-PCR were consistent with those from RNA-Seq, underscoring the reliability of the findings. Candidate genes identified in this study that may be resistant to BB, such as NBS-LRR family genes LOC_Os11g11960 and LOC_Os11g12350, SWEET family genes LOC_Os01g50460 and LOC_Os01g12130, and protein kinase-expressing genes LOC_Os01g66860 and LOC_Os02g57700, will provide a theoretical basis for further experiments. These results suggest that the immune response of rice to the two strains may be more concentrated in the early stage, and there are more up-regulated genes in the immune response of the high-resistant to PXO99A and medium-resistant to AH28, respectively, compared with the highly susceptible rice. This study offers a foundation for further research on resistance genes and the molecular mechanisms in Fan3 and YHSM. | 2024 | 39599338 |
| 8760 | 19 | 0.9537 | Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria. | 2011 | 22032684 |