HS1 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
302300.9062ICEAplChn1, a novel SXT/R391 integrative conjugative element (ICE), carrying multiple antibiotic resistance genes in Actinobacillus pleuropneumoniae. SXT/R391 integrative conjugative elements (ICEs) are capable of self-transfer by conjugation and highly prevalent in various aquatic bacteria and Proteus species. In the present study, a novel SXT/R391 ICE, named ICEAplChn1, was identified in the multidrug resistant (MDR) Actinobacillus pleuropneumoniae strain app6. ICEAplChn1 was composed of the typical SXT/R391 backbone and insertion DNA at eight hotspots, including HS1, HS2, HS3, HS4, HS5, VRII, VRIII and a new variation region VRVI. Many of the insertion contents were not present in other reported SXT/R391 family members, including ICEApl2, a recently identified SXT/R391 ICE from a clinical isolate of A. pleuropneumoniae. Remarkably, the VRIII region had accumulated seven resistance genes tet(A), erm(42), floR, aphA6, strB (two copies), strA and sul2. Of them, erm(42) and aphA6 emerged for the first time not only in the SXT/R391 elements but also in A. pleuropneumoniae. Phylogenetic analysis showed considerable variation of the backbone sequence of ICEAplChn1, as compared to those of other SXT/R391 ICEs. A circular intermediate form of ICEAplChn1 was detected by nested PCR. However, the conjugation experiments using different bacteria as recipients failed. These findings demonstrated that SXT/R391 ICEs are able to adapt to a broader range of host bacterial species. The presence of the MDR gene cluster in ICEAplChn1 underlines that SXT/R391 ICE could serve as an important vector for the accumulation of antibiotic resistance genes.201829885796
302410.8973Identification of ISVlu1-derived translocatable units containing optrA and/or fexA genes generated by homologous or illegitimate recombination in Lactococcus garvieae of porcine origin. The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.202438479301
300720.8958Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae.200414711528
302130.8949Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.201121115076
41740.8949Site-specific integration of genes into hot spots for recombination flanking aadA in Tn21 transposons. Tn21-related transposons are widespread among bacteria and carry various resistance determinants at preferential sites, hs1 and hs2. In an in vivo integrative recombination assay it was demonstrated that these hot spots direct the integration of aminoglycoside resistance genes like aadB from Klebsiella pneumoniae and aacAI from Serratia marcescens, in a recA- background. The maximum required recognition sequence which must be present in both the donor and recipient plasmids is 5' CTAAAACAAAGTTA 3' (hs2). The double-site-specific recombination occurred with a frequency of 10(-5)-10(-6). The resulting structures include not only replicon fusion products but also more complex structures carrying two copies of the donor plasmid or simply the donor gene flanked by hs elements. hs1 and hs2 are thought to act as recognition sites for a transacting site-specific recombinase. By the use of Tn21 deletion derivatives, it has been shown that the recombinase is not encoded by Tn21. This new integrative recombination system is involved in the acquisition of new genes by Tn21-related transposons and their spread among bacterial populations.19911654505
81550.8948The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Three different, independently isolated mercury-resistance-conferring plasmids, pMER327/419, pMER330 and pMER05, from cultures originating from the river Mersey (UK), contain identical regulatory merR genes and transposon ends. The mer determinant from pMER327/419 contains an additional potential ORF (ORF F) located between merP and merA when compared with the archetypal Tn501. Although these plasmids confer narrow-spectrum resistance (resistance to Hg2+, but not organomercurials) their merR genes encode a potential organomercurial-sensing protein. Transposition of the mer of pMER05 into plasmid RP4 was demonstrated and, as with Tn502 and Tn5053, insertion occurred at a specific region. The sequence of pMER05 is identical at the 'left' and 'right' termini and across merR to Tn5053, which was independently isolated from the chromosome of a Xanthomonas sp. bacteria from the Khaidarkan mercury mine in Kirgizia, former Soviet Union [Kholodii et al., J. Mol. Biol. 230 (1993a) 1103-1107]. The transpositional unit of pMER05 is, like that of Tn5053, bounded by DNA homologous to the imperfect 25-bp inverted repeats (IR) of the In2 integron, which brackets antibiotic-resistance cassettes in Tn21 subgroup transposons. At one end of the transposable element, and internal to the In2-like IR, is a 38-bp IR which closely resembles the IR that bounds Tn21.19948063107
82060.8944Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.19938380801
300070.8940A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Acinetobacter baumannii is an important nosocomial pathogen that often complicates treatment because of its high level of resistance to antibiotics. Though plasmids can potentially introduce various genes into bacterial strains, compared to other Gram-negative bacteria, information about the unique A. baumannii plasmid repertoire is limited. Here, whole genome sequence data was used to determine the plasmid content of strain A297 (RUH875), the reference strain for the globally disseminated multiply resistant A. baumannii clone, global clone 1(GC1). A297 contains three plasmids. Two known plasmids were present; one, pA297-1 (pRAY*), carries the aadB gentamicin, kanamycin and tobramycin resistance gene and another is an 8.7kb cryptic plasmid often found in GC1 isolates. The third plasmid, pA297-3, is 200kb and carries the sul2 sulphonamide resistance gene and strAB streptomycin resistance gene within Tn6172 and a mer mercuric ion resistance module elsewhere. pA297-3 transferred sulphonamide, streptomycin and mercuric ion resistance at high frequency to a susceptible A. baumannii recipient, and contains several genes potentially involved in conjugative transfer. However, a relaxase gene was not found. It also includes several genes encoding proteins involved in DNA metabolism such as partitioning. However, a gene encoding a replication initiation protein could not be found. pA297-3 includes two copies of a Miniature Inverted-Repeat Transposable Element (MITE), named MITE-297, bracketing a 77.5kb fragment, which contains several IS and the mer module. Several plasmids related to but smaller than pA297-3 were found in the GenBank nucleotide database. They were found in different A. baumannii clones and are wide spread. They all contain either Tn6172 or a variant in the same position in the backbone as Tn6172 in pA297-3. Some related plasmids have lost the segment between the MITE-297 copies and retain only one MITE-297. Others have segments of various lengths between two MITE-297 copies, and these can be derived from the region in pA297-3 via a deletion adjacent to IS related to IS26 such as IS1007 or IS1007-like. pA297-3 and its relatives represent a third type of conjugative Acinetobacter plasmid that contributes to the dissemination of antibiotic resistance in this species.201627601280
299980.8937Integrative and conjugative elements in streptococci can act as vectors for plasmids and translocatable units integrated via IS1216E. Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.202336933870
300190.8928IS26 and the IS26 family: versatile resistance gene movers and genome reorganizers. SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.202438436262
3060100.8924Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene.200919332679
3027110.8923Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. A novel antibiotic and chromate resistance transposon, Tn5045, was isolated from a permafrost strain of Pseudomonas sp. Tn5045 is a compound transposon composed of three distinct genetic elements. The backbone element is a Tn1013-like Tn3 family transposon, termed Tn1013∗, that contains the tnpA and the tnpR genes, encoding the transposase and resolvase, respectively, the res-site and four genes (orfA, B, C, D) related to different house-keeping genes. The second element is class 1 integron, termed InC∗, which is inserted into the Tn1013∗ res-region and contains 5'-CS-located integrase, 3'-CS-located qacE∆1 and sulfonamide resistance sulI genes, and a single cassette encoding the streptomycin resistance aadA2-gene. The third element is a TnOtChr-like Tn3 family transposon termed TnOtChr∗, which is inserted into the transposition module of the integron and contains genes of chromate resistance (chrB, A, C, F). Tn5045 is the first example of an ancient integron-containing mobile element and also the first characterized compound transposon coding for both antibiotic and chromate, resistance. Our data demonstrate that antibiotic and chromate resistance genes were distributed in environmental bacteria independently of human activities and provide important insights into the origin and evolution of antibiotic resistance integrons.201121262357
1493120.8922Coexistence of blaKPC-2 and blaNDM-1 in one IncHI5 plasmid confers transferable carbapenem resistance from a clinical isolate of Klebsiella michiganensis in China. OBJECTIVES: This study firstly identified an IncHI5 plasmid pK254-KPC_NDM co-carrying two different class carbapenemase genes blaKPC-2 and blaNDM-1 in Klebsiella michiganensis K254. METHODS: The strain K254 was sequenced by high-throughput genome sequencing. A detailed genomic and phenotypic characterization of pK254-KPC_NDM was performed. RESULTS: pK254-KPC_NDM displayed the conserve IncHI5 backbone and carried a resistant accessory region: Tn1696-related transposon Tn7414 containing blaKPC-2 and blaNDM-1. A sequence comparison was applied to a collection of four Tn1696-related transposons (Tn7414-Tn7417) harbouring carbapenemase genes. For all these four transposons, the blaNDM-1 was carried by Tn125 derivatives within three different mobile genetic elements. Tn7414 further acquired another carbapenemase gene, blaKPC-2, because of the integration of the local blaKPC-2 genetic environment from Tn6296, resulting in the high-level carbapenem resistance of K. michiganensis K254. The conjugal transfer and plasmid stability experiments confirmed that pK254-KPC_NDM could be transferred intercellularly and keep the stable vertical inheritance in different bacteria, which would contribute to the further dissemination of multiple carbapenemase genes and enhance the adaption and survival of K. michiganensis under complex and diverse antimicrobial selection pressures. CONCLUSION: This study was the first to report the K. michiganensis isolate coharbouring blaKPC-2 and blaNDM-1 in the Tn1696-related transposon in IncHI5 plasmid. The emergence of novel transposons simultaneously carrying multiple carbapenemase genes might contribute to the further dissemination of high-level carbapenem resistance in the isolates of the hospital settings and pose new challenges for the treatment of nosocomial infection.202337714378
460130.8922Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.200111343129
3018140.8921The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis.19911946749
3015150.8916Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.201425063046
530160.8911Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
3003170.8910IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. The IS26 transposase, Tnp26, catalyzes IS26 movement to a new site and deletion or inversion of adjacent DNA via a replicative route. The intramolecular deletion reaction produces a circular molecule consisting of a DNA segment and a single IS26, which we call a translocatable unit or TU. Recently, Tnp26 was shown to catalyze an additional intermolecular, conservative reaction between two preexisting copies of IS26 in different plasmids. Here, we have investigated the relative contributions of homologous recombination and Tnp26-catalyzed reactions to the generation of a transposon from a TU. Circular TUs containing the aphA1a kanamycin and neomycin resistance gene or the tet(D) tetracycline resistance determinant were generated in vitro and transformed into Escherichia coli recA cells carrying R388::IS26. The TU incorporated next to the IS26 in R388::IS26 forms a transposon with the insertion sequence (IS) in direct orientation. Introduction of a second TU produced regions containing both the aphA1a gene and the tet(D) determinant in either order but with only three copies of IS26. The integration reaction, which required a preexisting IS26, was precise and conservative and was 50-fold more efficient when both IS26 copies could produce an active Tnp26. When both ISs were inactivated by a frameshift in tnp26, TU incorporation was not detected in E. coli recA cells, but it did occur in E. coli recA (+) cells. However, the Tnp-catalyzed reaction was 100-fold more efficient than RecA-dependent homologous recombination. The ability of Tnp26 to function in either a replicative or conservative mode is likely to explain the prominence of IS26-bounded transposons in the resistance regions found in Gram-negative bacteria. IMPORTANCE In Gram-negative bacteria, IS26 recruits antibiotic resistance genes into the mobile gene pool by forming transposons carrying many different resistance genes. In addition to replicative transposition, IS26 was recently shown to use a novel conservative movement mechanism in which an incoming IS26 targets a preexisting one. Here, we have demonstrated how IS26-bounded class I transposons can be produced from translocatable units (TUs) containing only an IS26 and a resistance gene via the conservative reaction. TUs were incorporated next to an existing IS26, creating a class I transposon, and if the targeted IS26 is in a transposon, the product resembles two transposons sharing a central IS26, a configuration observed in some resistance regions and when a transposon is tandemly duplicated. Though homologous recombination could also incorporate a TU, Tnp26 is far more efficient. This provides insight into how IS26 builds transposons and brings additional transposons into resistance regions.201627303727
1492180.8908Characterization of the tet(M)-bearing transposon Tn7125 of Escherichia coli strain A13 isolated from an intensive pig farm located in Henan province, China. BACKGROUND: Transposons carrying tet(M) in Gram-positive bacteria have been reported extensively, while there is a paucity of data on the transmission characteristics of tet(M) in Gram-negative bacteria. Therefore, the aim of this study was to investigate the genetic characteristics of the tet(M)-bearing transposon Tn7125, and to clarify the transmission mechanism of the plasmids pTA13-1 and pTA13-3 in Escherichia coli strain A13. METHODS: Plasmids from strain A13 and a corresponding transconjugant were determined by whole genome sequencing and analyzed using bioinformatics tools. The plasmids pTA13-1 and pTA13-3 of the transconjugant TA13 were characterized by S1-pulse-field gel electrophoresis, Southern hybridization, stability experiments, and direct competition assays. RESULTS: The conjugated IncF2:A6:B20 plasmid pTA13-1 co-transferred with the 41-kb plasmid pTA13-3, which carried no resistance genes; plasmid pTA13-2, which harbored the replication initiator PO111; and the IncX4 plasmid pTA13-4, which harbored the antibiotic resistance gene mcr-1. The novel IS26-bracked composite transposon Tn7125 was located on plasmid pTA13-1, which mainly consists of three resistance modules: IS26-ctp-lp-tet(M)-hp-IS406tnp, qac-aadA1-cmlA1-aadA2-DUF1010-dfrA12, and ∆ISVSa3-VirD-floR-LysR-ISVSa3. The plasmid pTA13-1 was highly stable in E. coli strain J53 with no fitness cost to the host or disadvantage in growth competition. CONCLUSION: Evolution of co-integrated transposons, such as Tn7125, may convey antibiotic resistance to a wide spectrum of hosts via the plasmids pTA13-1 and pTA13-3, which acts as an adaptable and mobile multidrug resistance reservoir to accelerate dissemination of other genes by co-selection, thereby posing a potentially serious barrier to clinical treatment regimens.202540639501
5209190.8907Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes.201626941718