# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6939 | 0 | 0.9951 | Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems. | 2023 | 37007487 |
| 6821 | 1 | 0.9951 | Mangrove plastisphere as a hotspot for high-risk antibiotic resistance genes and pathogens. Microplastics (MPs) are critical vectors for the dissemination of antibiotic resistance genes (ARGs); however, the prevalence and ecological risks of high-risk ARGs in mangrove ecosystems-globally vital yet understudied coastal habitats-remain poorly understood. To address this gap, this study investigated polyethylene, polystyrene, and polyvinyl chloride incubated in mangrove sediments for one month, focusing on high-risk ARGs, virulence gene (VGs), and pathogenic antibiotic-resistant bacteria within the mangrove plastisphere. High-throughput PCR and metagenomic analyses revealed that high-risk ARGs, VGs, and mobile genetic elements (MGEs) were significantly enriched on MPs compared to surrounding sediments. Pathogenic bacteria and MGEs were also more abundant in the plastisphere, highlighting its role as a hotspot for ARG dispersal. Metagenome-assembled genome analysis identified Pseudomonas and Bacillus as key hosts for ARGs, MGEs, and VGs, particularly multidrug resistance genes, integrase genes, and adherence factors. Notably, polystyrene harbored the highest abundance of pathogenic bacteria carrying ARGs, MGEs, and VGs, and mangrove root exudates were found to amplify horizontal gene transfer on MPs, uncovering a previously overlooked mechanism driving antibiotic resistance in coastal ecosystems. These findings not only elucidate how MPs accelerate the spread of ARGs, but also underscore the urgent need for targeted mitigation strategies to address the adverse impacts microplastic pollution on human, animal, and environmental health. | 2025 | 40043931 |
| 7167 | 2 | 0.9951 | Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems. | 2024 | 38782270 |
| 6823 | 3 | 0.9950 | Metagenomic assembly and binning analyses the prevalence and spread of antibiotic resistome in water and fish gut microbiomes along an environmental gradient. The pristine river and urban river show an environmental gradient caused by anthropogenic impacts such as wastewater treatment plants and domestic wastewater discharges. Here, metagenomic and binning analyses unveiled antibiotic resistance genes (ARGs) profiles, their co-occurrence with metal resistance genes (MRGs) and mobile genetic elements (MGEs), and their host bacteria in water and Hemiculter leucisculus samples of the river. Results showed that the decrease of ARG abundances from pristine to anthropogenic regions was attributed to the reduction of the relative abundance of multidrug resistance genes in water microbiomes along the environmental gradient. Whereas anthropogenic impact contributed to the enrichment of ARGs in fish gut microbiomes. From pristine to anthropogenic water samples, the dominant host bacteria shifted from Pseudomonas to Actinobacteria. Potential pathogens Vibrio parahaemolyticus, Enterobacter kobei, Aeromonas veronii and Microcystis aeruginosa_C with multiple ARGs were retrieved from fish gut microbes in lower reach of Ba River. The increasing trends in the proportion of the contigs carrying ARGs (ARCs) concomitant with plasmids along environmental gradient indicated that plasmids act as efficient mobility vehicles to enhance the spread of ARGs under anthropogenic pressures. Moreover, the higher co-occurrence of ARGs and MRGs on plasmids revealed that anthropogenic impacts accelerated the co-transfer potential of ARGs and MRGs and the enrichment of ARGs. Partial least squares path modeling revealed anthropogenic contamination could shape fish gut antibiotic resistome mainly via affecting ARG host bacteria in water microbiomes, following by ARGs co-occurrence with MGEs and MRGs in gut microbiomes. This study enhanced our understanding of the mechanism of the anthropogenic activities on the transmission of antibiotic resistome in river ecosystem and emphasized the risk of ARGs and pathogens transferring from an aquatic environment to fish guts. | 2022 | 35716556 |
| 7007 | 4 | 0.9949 | Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Organic manure has been implicated as an important source of antibiotic resistance genes (ARGs) in agricultural soils. However, the profiles of biocide resistance genes (BRGs), metal resistance genes (MRGs) and virulence genes (VGs) and their bacterial hosts in manure-amended soils remain largely unknown. Herein, a systematic metagenome-based survey was conducted to comprehensively explore the changes in resistomes, VGs and their bacterial hosts, mobile genetic elements (MGEs), and pathogenic bacteria in manure-amended greenhouse soils. Many manure-borne ARGs, BRGs, MRGs, VGs, and bacterial pathogens could be transferred into soils by applying manures, and their abundance and diversity were markedly positively correlated with greenhouse planting years (manure amendment years). The main ARGs transferred from manures to soils conferred resistance to tetracycline, aminoglycoside, and macrolide-lincosamide-streptogramin. Both statistical analysis and gene arrangements showed a good positive co-occurrence pattern of ARGs/BRGs/MRGs/VGs and MGEs. Furthermore, bacterial hosts of resistomes and VGs were significantly changed in the greenhouse soils in comparison with the field soils. Our findings confirmed the migration and dissemination of resistomes, VGs, and bacterial pathogens, and their accumulation and persistence were correlated with the continuous application of manures. | 2020 | 32298867 |
| 7175 | 5 | 0.9949 | Key Contribution and Risk of Airborne Antibiotic Resistance: Total Suspended Particles or Settled Dust? The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging tet(X) variants and high-risk dfrA remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers. | 2025 | 40434009 |
| 7267 | 6 | 0.9949 | Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. BACKGROUND: Municipal wastewater treatment plants (WWTPs) are pivotal reservoirs for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Selective pressures from antibiotic residues, co-selection by heavy metals, and conducive environments sustain ARGs, fostering the emergence of ARB. While advancements in WWTP technology have enhanced the removal of inorganic and organic pollutants, assessing ARG and ARB content in treated water remains a gap. This metagenomic study meticulously examines the filtration efficiency of two distinct WWTPs-conventional (WWTPC) and advanced (WWTPA), operating on the same influent characteristics and located at Aligarh, India. RESULTS: The dominance of Proteobacteria or Pseudomonadota, characterized the samples from both WWTPs and carried most ARGs. Acinetobacter johnsonii, a prevailing species, exhibited a diminishing trend with wastewater treatment, yet its persistence and association with antibiotic resistance underscore its adaptive resilience. The total ARG count was reduced in effluents, from 58 ARGs, representing 14 distinct classes of antibiotics in the influent to 46 and 21 in the effluents of WWTPC and WWTPA respectively. However, an overall surge in abundance, particularly influenced by genes such as qacL, bla(OXA-900), and rsmA was observed. Numerous clinically significant ARGs, including those against aminoglycosides (AAC(6')-Ib9, APH(3'')-Ib, APH(6)-Id), macrolides (EreD, mphE, mphF, mphG, mphN, msrE), lincosamide (lnuG), sulfonamides (sul1, sul2), and beta-lactamases (bla(NDM-1)), persisted across both conventional and advanced treatment processes. The prevalence of mobile genetic elements and virulence factors in the effluents possess a high risk for ARG dissemination. CONCLUSIONS: Advanced technologies are essential for effective ARG and ARB removal. A multidisciplinary approach focused on investigating the intricate association between ARGs, microbiome dynamics, MGEs, and VFs is required to identify robust indicators for filtration efficacy, contributing to optimized WWTP operations and combating ARG proliferation across sectors. | 2025 | 40050994 |
| 6790 | 7 | 0.9949 | Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective. | 2025 | 39488061 |
| 6824 | 8 | 0.9948 | Anthropogenic gene dissemination in Tibetan Plateau rivers: sewage-driven spread, environmental selection, and microeukaryotic inter-trophic driving factors. The spread of anthropogenic genes, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs), and antibiotic-resistant bacteria (ARBs), is a growing public health concern. However, the role of anthropogenic activities in the dissemination of these genes and bacteria in Tibetan Plateau rivers is still unclear. In this study, we analyzed 138 metagenomic samples from water and sediment across nine Tibetan rivers, along with sewage samples from 21 wastewater treatment plants (WWTPs), at both the gene and contig levels, to investigate the spread of the sewage-enriched genes and their bacterial hosts (contigs) in Tibetan rivers. Overall, sewage input was positively correlated with increased the abundance of an average 56 % and 17 % of detected genes in water and sediment, respectively. However, FEAST source tracking analysis revealed that the overall contribution of sewage across all rivers was significantly lower than that of water and sediment. Additionally, sewage's impact varied across rivers, with the Yarlung Zangbo, the largest river, exhibiting limited influence despite receiving inputs from smaller rivers and WWTPs. Neutral community model (NCM) suggested that neutral processes and negative selection predominantly governed the spread of majority of highly abundant sewage-enriched genes and contigs, suggesting restricted environmental spread. In contrast, a subset of genes over-represented relative to neutral expectations (above-neutral prediction) showed lower overall abundance but higher richness, potentially reflecting selection that favor their retention in certain downstream environments. Furthermore, sewage-enriched genes and contigs in water, regardless of their community assembly processes, were linked to microbial interaction modules dominated by microeukaryotic groups associated with sewage, including consumer protists (ciliate), human parasites (e.g., Naegleria), algae, and fungi. These interactions may facilitate the dissemination of antimicrobial resistance in aquatic environments, though this pattern was less pronounced in sediment. | 2025 | 40446767 |
| 7164 | 9 | 0.9948 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 7174 | 10 | 0.9948 | Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure. | 2025 | 40472755 |
| 7168 | 11 | 0.9948 | Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils. | 2022 | 35728317 |
| 7004 | 12 | 0.9948 | Sheep and rapeseed cake manure promote antibiotic resistome in agricultural soil. The application of manure in agriculture caused the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil environments. However, the co-occurrence pattern and host diversity of ARGs and MGEs in soils amended with animal and green manures remains unclear. In this study, metagenomic assembly and binning techniques were employed to comprehensively explore the effects of sheep manure and green manure on soil microbiome, antibiotic resistomes, and ARG hosts. Both rapeseed cake manure and sheep manure increased the abundance and diversity of ARGs, with sheep manure particularly enhancing the abundance of ARGs conferring resistant to multidrug, quinolone, rifampicin, and macrolide-lincosamide-streptogramin (MLSB). Mobile genetic elements (MGEs), such as plasmids, transposases, and integrases, preferentially enhanced the potential mobility of some ARGs subtypes (i.e. sul2, aadA, qacH, and folp), facilitating the spread of ARGs. Additionally, sheep manure reshaped the bacterial community structure and composition as well as ARG hosts, some opportunistic pathogens (i.e. Staphylococcus, Streptococcus, and Pantoea) acquired antibiotic resistance and remained recalcitrant. It is concluded that rapeseed cake manure and sheep manure increased the co-occurrence of ARGs and MGEs, enriched the potential ARG hosts, and promoted the dissemination of ARGs in agricultural soils. | 2025 | 40633350 |
| 7169 | 13 | 0.9948 | Distributions of pathogenic bacteria, antibiotic resistance genes, and virulence factors in pig farms in China. The abundance of antibiotic resistance genes (ARGs) in pig feces can lead to their dissemination in the pig farm environment, posing a serious risk to human health through potential exposure and transmission. However, the extent of microbial contamination in pig farms, including ARGs, virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs), is still largely unknown. In this study, metagenomics was employed to identify the composition and characteristics of microorganism communities, ARGs, VFGs, MGEs and HBPs in pig farm environments from seven different regions of China. The results showed that there were significant differences in the composition of microorganisms and Firmicutes, Bacteroides, Proteobacteriahe Spirochaetes were the dominant phyla in the pig farm environment. The abundance and composition of ARGs, VFGs, MGEs and HBPs varied significantly in pig farm environments in different regions, with the abundance in Fujian being significantly higher than that in other regions. In total, 216 ARGs, 479 VFGs, 143 MGEs and 78 HBPs were identified across all pig feces, soil, and wastewater samples. The most prominent ARGs were those related to tetracycline, aminoglycoside, and MLS resistance. Escherichia coli, Arcobacter cryaerophilus, Corynebacterium xerosis, Aerococcus viridans, and Collinsella aerofaciens were the most commonly found HBPs in the pig farm environment. Procrustes analysis and Mantel test results showed a strong correlation between ARGs and HBPs, VFGs and HBPs, and ARGs and VFGs. ARGs were mainly harbored by E. coli, Klebsiella pneumoniae, and Enterococcus faecalis in the pig farm environments. The random forest model indicated that the presence of MGEs (intI1, IS91, and tnpA) was significantly correlated with the total abundance of resistance genes, which can be utilized as an important indicator for measuring resistance genes. The study establishes a foundational understanding of the prevalence and diversity of ARGs, VFGs, and HBPs in pig farm environments, aiding in the development of effective management strategies to mitigate ecological and public health risks. | 2025 | 40609272 |
| 7176 | 14 | 0.9948 | Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments. | 2021 | 33120141 |
| 3173 | 15 | 0.9947 | Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health. | 2025 | 40633655 |
| 7006 | 16 | 0.9947 | Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes. | 2023 | 37409977 |
| 7170 | 17 | 0.9947 | Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health. | 2022 | 34600986 |
| 6822 | 18 | 0.9947 | River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus). Animals living in urban river systems play critical roles in the dissemination of microbiome and antibiotic resistance that poses a strong threat to public health. This study provides a comprehensive profile of microbiota and antibiotic resistance genes (ARGs) of sharpbelly (Hemiculter leucisculus) and the surrounding water from five sites along the Ba River. Results showed Proteobacteria, Firmicutes and Fusobacteria were the dominant bacteria in gut of H. leucisculus. With the aggravation of water pollution, bacterial biomass of fish gut significantly decreased and the proportion of Proteobacteria increased to become the most dominant phylum eventually. To quantify the contributions of influential factors on patterns of gut microbiome with structural equation model (SEM), water bacteria were confirmed to be the most stressors to perturb fish gut microbiome. SourceTracker model indicated that deteriorating living surroundings facilitated the invasion of water pathogens to fish gut eco-environments. Additionally, H. leucisculus gut is an important reservoir of ARGs in Ba River with relative abundance up to 9.86 × 10(-1)/copies. Among the ARGs, tetracycline and quinolone resistance genes were detected in dominant abundance. Deterioration of external environments elicited the accumulation of ARGs in fish gut. Intestinal class I integron, environmental heavy metal residues and gut bacteria were identified as key drivers of intestinal ARGs profiles in H. leucisculus. Analysis of SEM and co-occurrence patterns between ARGs and bacterial hosts indicated that class I integron and bacterial community played vital roles in ARGs transmission through water-fish pathway. In general, this study highlighted hazards of water contamination to microbiome and ARGs in aquatic animals and provided a new perspective to better understand the bacteria and ARGs dissemination in urban river ecosystems. | 2021 | 33120330 |
| 6819 | 19 | 0.9947 | Risk characteristics of resistome coalescence in irrigated soils and effect of natural storage of irrigation materials on risk mitigation. Irrigation and fertilization are the routinely agricultural practices but also cause resistome coalescence, by which the entire microbiomes from irrigation materials invade soil microbial community, to transfer antibiotic resistance genes (ARGs) in the coalesced soils. Although studies have reported the effect of irrigation or fertilization on the prevalence and spread of ARGs in soils, risk characteristics of resistome coalescence in irrigation system remain to be demonstrated and few has shown whether natural storage of irrigation materials will reduce resistance risks. To fill the gaps, two microscopic experiments were conducted for deeply exploring resistance risks in the soils irrigated with wastewater and manure fertilizer from a perspective of community coalescence by metagenomic analysis, and to reveal the effect of natural storage of irrigation materials on the reduction of resistance risks in the coalesced soils. Results showed irrigation and coalescence significantly increased the abundance and diversity of ARGs in the soils, and introduced some emerging resistance genes into the coalesced community, including mcr-type, tetX, qacB, and an array of genes conferring resistance to carbapenem. Procrustes analysis demonstrated microbial community was significantly correlated with the ARGs in coalesced soils, and variance partitioning analysis quantified its dominant role on shaping resistome profile in the environment. Besides ARGs, abundant and diverse mobile genetic elements (MGEs) were also identified in the coalesced soils and co-existed on the ARG-carrying contigs, implying potential transfer risk of ARGs in the irrigation system. Further, the analysis of metagenome-assembled genomes (MAGs) confirmed the risk by recovering 358 ARGs-carrying MAGs and identifying the resistant bacteria that co-carried multiple ARGs and MGEs. As expected, the natural storage of irrigation water and manure fertilizer reduced about 27%-54% of ARGs, MGEs and virulence factors in the coalesced soils, thus caused the soils to move towards lower resistance risks to a certain extent. | 2023 | 37742860 |