# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3481 | 0 | 0.9275 | Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake. | 2016 | 27418176 |
| 8113 | 1 | 0.9231 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 8109 | 2 | 0.9220 | The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating. | 2022 | 35063626 |
| 8105 | 3 | 0.9213 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 8108 | 4 | 0.9207 | Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting. | 2021 | 34534940 |
| 7136 | 5 | 0.9206 | Insights into the effects of haze pollution on airborne bacterial communities and antibiotic resistance genes in fine particulate matter. Fine particulate matter (PM(2.5)) is a key component of haze pollution and poses a substantial threat to human health. However, airborne bacteria and antibiotic-resistance genes (ARGs), which are important biological components of PM(2.5), have received less attention. In this study, we investigated the combined effects of haze on airborne bacteria and ARGs in PM(2.5). Overall, during haze days, high concentrations of airborne bacteria (haze: 4782.24 ± 2689.85 cells/m(3); non-haze: 2866.00 ± 1753.95 cells/m(3)) were observed with unique bacterial community structures. At the genus level, Microvirga, Arthrobacter, and JG30-KF-CM45 were identified as the bacterial biomarkers of haze days. Neutral processes contributed more to the establishment of airborne bacterial communities on haze days (R(2) = 0.724) than that on non-hazy days (R(2) = 0.338). The pathogenicity of bacterial communities per unit volume of air was significantly higher during haze days (169.36 ± 8.36 cell/m(3)) than that during non-haze days (112.66 ± 5.92 cell/m(3)) (p < 0.05). Redundancy analysis indicated that relatively stable atmospheric conditions and high concentrations of water-soluble ions (Na(+), Mg(2+), Ca(2+), and F(-)), metals (Cd, As, Mn, and Cr), and carbonaceous fractions (elemental carbon) in PM(2.5) play critical roles in shaping the bacterial community during haze days. On haze days, airborne ARGs exhibited unique distribution characteristics and network structures with dominant bacteria. This study highlighted the impact of haze days on airborne bacteria and ARGs on PM(2.5) and provides a reference for managing the risks of bioaerosols. | 2025 | 40409396 |
| 7214 | 6 | 0.9204 | Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil. | 2015 | 25460961 |
| 8110 | 7 | 0.9204 | Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs. | 2021 | 33798888 |
| 8017 | 8 | 0.9203 | Dose-Dependent Effect of Tilmicosin Residues on ermA Rebound Mediated by IntI1 in Pig Manure Compost. The impact of varying antibiotic residue levels on antibiotic resistance gene (ARG) removal during composting is still unclear. This study investigated the impact of different residue levels of tilmicosin (TIM), a common veterinary macrolide antibiotic, on ARG removal during pig manure composting. Three groups were used: the CK group (no TIM), the L group (246.49 ± 22.83 mg/kg TIM), and the H group (529.99 ± 16.15 mg/kg TIM). Composting removed most targeted macrolide resistance genes (MRGs) like ereA, ermC, and ermF (>90% removal), and reduced ermB, ermX, ermQ, acrA, acrB, and mefA (30-70% removal). However, ermA increased in abundance. TIM altered compost community structure, driving succession through a deterministic process. At low doses, TIM reduced MRG-bacteria co-occurrence, with horizontal gene transfer via intI1 being the main cause of ermA rebound. In conclusion, composting reduces many MRG levels in pig manure, but the persistence and rebound of genes like ermA reveal the complex interactions between composting conditions and microbial gene transfer. | 2025 | 41011454 |
| 7998 | 9 | 0.9202 | Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health. | 2017 | 26715413 |
| 7757 | 10 | 0.9201 | Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants. | 2016 | 27443461 |
| 7747 | 11 | 0.9199 | Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter. | 2023 | 36648713 |
| 8106 | 12 | 0.9197 | Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. This study explored the effects of composting using three temperature regimes, namely, insufficient thermophilic composting (ITC), normal thermophilic composting (NTC), and continuous thermophilic composting (CTC), on antibiotic resistance genes (ARGs), integrons, and human pathogenic bacteria (HPB), as well as the mechanisms involved. The NTC and CTC treatments led to greater decreases in 5/10 ARGs and two integrons than ITC, and the abundances of ARGs (tetC, tetG, and tetQ) and int1 only declined in the NTC and CTC treatments. The abundances of HPB decreased by 82.8%, 76.9%, and 96.9% under ITC, NTC, CTC, respectively. Redundancy analysis showed that both bacterial succession and horizontal gene transfer play important roles in the variation of ARGs, and the changes in different ARGs were due to diverse mechanisms. CTC performed significantly better at reducing ARGs, integrons, and HPB, thus it may be used to manage the public health risks of ARGs in animal manure. | 2016 | 27598571 |
| 8021 | 13 | 0.9197 | The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. The variation of antibiotic resistance genes (ARGs) and influential factors in pig manure composting were investigated by conducting simulated composting tests using four different supplement materials (wheat straw, corn straw, poplar sawdust and spent mushroom). The results show that the relative abundance of total ARGs increased by 0.19-1.61 logs after composting, and tetX, sulI, sulII, dfrA1 and aadA were the major contributors. The variations of ARG profiles and bacterial communities throughout the composting were clearly divided into mesophilic-thermophilic and cooling-maturation stages in all tests, while different supplement materials did not exert a noticeable influence. Network analysis demonstrated the diversity of bacterial hosts for ARGs, the existence of multiple antibiotic resistant bacteria, and the weak correlations between ARGs and physicochemical factors in the composting piles. Of note, integron intI1 and Mycobacterium (a potential pathogen) were positively correlated with eight and four ARGs, respectively, that displayed increased abundance after composting. | 2020 | 32109697 |
| 3513 | 14 | 0.9196 | Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China. The Three Gorges Project significantly impacted water quality and ecological balance in this area. The special engineered aquatic environment could be an important reservoir for antibiotic resistance genes (ARGs). Fifteen ARGs corresponding to three groups of antibiotics (tetracyclines, sulfonamides and quinolones) were determined in surface water, soil and sediment in this study. Total concentrations of antibiotics ranged from 21.55 to 536.86ng/L, 3.69 to 438.76ng/g, 15.78 to 213.84ng/g in water, soil and sediment, respectively. Polymerase chain reaction (PCR) of ARGs revealed the presence of two sulfonamide resistance genes (sul1, sul2), five tetracycline resistance genes (tetA, tetB, tetM, tetQ, tetG) and class 1 integron gene (intI1) in all samples. And the relative abundance of sulfonamide resistance genes was generally higher than tetracycline resistance genes in three matrices. Significant correlations (p<0.05) were found between the concentrations of intI1 and ARGs (tetA, tetB, tetM, tetQ, tetG, sul1, sul2), indicating intI1 may facilitate the proliferation and propagation of these genes. Redundancy analysis (RDA) showed distribution of ARGs was related to the certain antibiotics residues, which may exert selective pressure on bacteria and thus enrich the abundance of ARGs. The results of this study could provide useful information for both better understanding and management of the contamination caused by ARGs and related antibiotics in engineered aquatic environments. | 2018 | 29727994 |
| 8015 | 15 | 0.9196 | Distribution, horizontal transfer and influencing factors of antibiotic resistance genes and antimicrobial mechanism of compost tea. Compost tea was alternatives of chemical pesticide for green agriculture, but there were no reports about antibiotic resistance genes (ARGs) in compost tea. This study investigated the effect of livestock manures, sewage sludge, their composting products and liquid fermentation on ARGs, mobile genetic elements (MGEs), metal resistance genes (MRGs) and antimicrobial properties of various compost tea. The results showed aerobic liquid fermentation reduced ARGs by 65.93 % and 45.20 % in the compost tea of chicken manure and sludge, enriched ARGs by 8.57 % and 37.41 % in the compost tea of pig manure and bovine manure, and increased MGEs and MRGs by 1.25 × 10(-5)-5.53 × 10(-3) and 2.03 × 10(-5)-2.03 × 10(-3) in the four compost tea. The correlation coefficient of tetracycline and sulfonamide resistance genes between compost product and compost tea were 0.98 and 0.91. aadA2-02, sul2 and tetX abundant in the compost tea were positively correlated with MGEs and MRGs. Furthermore, liquid fermentation enriched the potential host of tetracycline and vancomycin resistance genes. Tetracycline resistance genes occupied 62.7 % of total ARGs in the compost tea. Alcaligenes and Bacillus enriched by 0.78-39.31 % in the four compost tea, which metabolites had high antimicrobial activity. The potential host of ARGs accounted for 42.1 % bacteria abundance in the four compost tea. | 2022 | 35803190 |
| 6380 | 16 | 0.9196 | Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'. | 2011 | 21487198 |
| 7992 | 17 | 0.9196 | Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil. Soils are exposed to various types of chemical contaminants due to anthropogenic activities; however, research on persistent organic pollutants and the existence of antibiotic resistance genes (ARGs) is limited. To our knowledge, the present work for the first time focused on the bioremediation of soil co-contaminated with pyrene and tetracycline/sulfonamide-resistance genes. After 90 days of incubation, the pyrene concentration and the abundance of the four ARGs (tetW, tetM, sulI, and sulII) significantly decreased in different treatment conditions (p<0.05). The greatest pyrene removal (47.8%) and greatest decrease in ARG abundance (from 10(-7) to 10(-8) ARG copies per 16S rRNA copy) were observed in microcosms with a combination of bacterial and sophorolipid treatment. Throughout the incubation, pyrene bioaccessibility constantly declined in the microcosm inoculated with bacteria. However, an increased pyrene bioaccessibility and ARG abundance at day 40 were observed in soil treated with sophorolipid alone. Tenax extraction methods and linear correlation analysis indicated a strong positive relationship between the rapidly desorbing fraction (Fr) of pyrene and ARG abundance. Therefore, we conclude that bioaccessible pyrene rather than total pyrene plays a major role in the maintenance and fluctuation of ARG abundance in the soil. | 2015 | 26164069 |
| 7163 | 18 | 0.9195 | Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs pose a high risk to soil ecology and public health. Here, we used a metagenomic approach to investigate their diversity and abundance in chicken manures and greenhouse soils collected from Guli, Pulangke, and Hushu vegetable bases with different greenhouse planting years in Nanjing, Eastern China. There was a positive correlation between the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and greenhouse soils. In total, 156.2–5001.4 μg/kg of antibiotic residues, 22 classes of ARGs, 32 HPB species, and 46 species of HPB carrying ARGs were found. The highest relative abundance was tetracycline resistance genes (manures) and multidrug resistance genes (greenhouse soils). The dominant HPB and HPB carrying ARGs in the manures were Bacillus anthracis, Bordetella pertussis, and B. anthracis (sulfonamide resistance gene, sul1), respectively. The corresponding findings in greenhouse soils were Mycobacterium tuberculosis and M. ulcerans, M. tuberculosis (macrolide-lincosamide-streptogramin resistance protein, MLSRP), and B. anthracis (sul1), respectively. Our findings confirmed high levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in the manured greenhouse soils compared with those in the field soils, and their relative abundance increased with the extension of greenhouse planting years. | 2015 | 25514174 |
| 8054 | 19 | 0.9195 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |