# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3864 | 0 | 0.9837 | Honeybees and tetracycline resistance. Like animals and people, insects can serve as both collectors and disseminators of antibiotic resistance genes, as exquisitely demonstrated by a recent study (B. Tian, N. H. Fadhil, J. E. Powell, W. K. Kwong, and N. A. Moran, mBio 3[6]:e00377-12, doi:10.1128/mBio.00377-12, 2012). Notably, the relatively confined ecosystem of the honeybee gut demonstrates a large propensity for harboring a diverse set of tetracycline resistance genes that reveal the environmental burden resulting from the long-time selective pressures of tetracycline use in the honeybee industry. As in humans and animals, these genes have become established in the native, nonpathogenic flora of the insect gut, adding credence to the concept that commensal floras provide large reservoirs of resistance genes that can readily move into pathogenic species. The homology of these tetracycline resistance determinants with those found in tetracycline-resistant bacteria associated with animals and humans strongly suggests a dissemination of similar or identical genes through shared ecosystems. The emergence of linked coresistances (ampicillin and tetracycline) following single-antibiotic therapy mirrors reports from other studies, namely, that long-term, single-agent therapy will result in resistance to multiple drugs. These results contrast with the marked absence of diverse, single- and multiple-drug resistance genes in wild and domestic bees that are not subjected to such selective pressures. Prospective studies that simultaneously track both resistance genes and antibiotic residues will go far in resolving some of the nagging questions that cloud our understanding of antibiotic resistance dissemination. | 2013 | 23404397 |
| 6725 | 1 | 0.9836 | Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes. | 2022 | 36208825 |
| 3071 | 2 | 0.9835 | Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera. | 2023 | 37835689 |
| 8108 | 3 | 0.9834 | Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting. | 2021 | 34534940 |
| 3528 | 4 | 0.9832 | Effect of Tulathromycin on Colonization Resistance, Antimicrobial Resistance, and Virulence of Human Gut Microbiota in Chemostats. To evaluate microbiological safety of tulathromycin on human intestinal bacteria, tulathromycin (0, 0.1, 1, 10, and 100 μg/mL) was added into Chemostats. Before and after drug exposure, we monitored (1) population, SCFA products, antimicrobial resistance, and colonization resistance of gut microbiota, and (2) the antimicrobial resistance genes, transferability, virulent genes, pathogenicity of Enterococus faecalis. Results showed that low level of tulathromycin did not exhibit microbiological hazard on resistance selection and colonization resistance. However, high level of tulathromycin (10 and 100 μg/mL) may disturb colonization resistance of human gut microbiota and select antimicrobial resistant E. faecalis. Most of the selected resistant E. faecalis carried resistant gene of ermB, transferable element of Tn1545 and three virulence genes (esp, cylA, and ace). One of them (E. faecalis 143) was confirmed to have higher horizontal transfer risk and higher pathogenicity. The calculated no observable adverse effect concentration (NOAEC) and microbiological acceptable daily intake (mADI) in our study was 1 μg/mL and 14.66 μg/kg.bw/day, respectively. | 2016 | 27092131 |
| 3698 | 5 | 0.9832 | Detection and Characterization of Streptomycin Resistance (strA-strB) in a Honeybee Gut Symbiont (Snodgrassella alvi) and the Associated Risk of Antibiotic Resistance Transfer. Use of antibiotics in medicine and farming contributes to increasing numbers of antibiotic-resistant bacteria in diverse environments. The ability of antibiotic resistance genes (ARG) to transfer between bacteria genera contributes to this spread. It is difficult to directly link antibiotic exposure to the spread of ARG in a natural environment where environmental settings and study populations cannot be fully controlled. We used managed honeybees in environments with contrasting streptomycin exposure (USA: high exposure, Norway: low exposure) and mapped the prevalence and spread of transferrable streptomycin resistance genes. We found a high prevalence of strA-strB genes in the USA compared to Norway with 17/90 and 1/90 positive samples, respectively (p < 0.00007). We identified strA-strB genes on a transferrable transposon Tn5393 in the honeybee gut symbiont Snodgrassella alvi. Such transfer of resistance genes increases the risk of the spread to new environments as honeybees are moved to new pollination sites. | 2018 | 29520453 |
| 7210 | 6 | 0.9832 | Managing Beef Backgrounding Residual Soil Contaminants by Alum and Biochar Amendments. Heavy manure-derived contamination of soils can make animal congregating areas nonpoint sources for environmental pollution. In situ soil stabilization is a cost-effective management strategy with a focus on lowering contaminant availability and limiting release to the environment. Soil stabilizing amendments can help mitigate the negative environmental impacts of contaminated soils. In this 2-yr study, we examined the effects of adding no amendment (control) or treating with alum [Al (SO)⋅18HO] or biochar as soil amendments on Mehlich-3 extractable soil P, Cu, and Zn contents, antimicrobial monensin concentrations, total bacteria (16S ribosomal RNA [rRNA] gene), antibiotic resistance genes (1 and B), and Class 1 integrons (1) in an abandoned beef backgrounding setting. The alum reduced soil P (1374 to 1060 mg kg), Cu (7.7 to 3.2 mg kg), and Zn (52.4 to 19.6 mg kg) contents. Both alum and biochar reduced monesin concentrations (1.8 to 0.7 and 2.1 to 1.1 ng g, respectively). All the treatments harbored consistent 16 rRNA concentrations (10 copies g) throughout. The B gene concentration (10 copies g) was lower than either the 1 or the 1 genes (10 copies g), regardless of treatments. However, concentrations of all genes in the soils of animal congregation areas were higher than those in background soils with the least animal impact. In contrast with the effect on other contaminants, the effect of soil amendments on bacteria with antibiotic resistance genes was not biologically significant. Future research should be directed toward evaluating effective alternative methods to mitigate these bacterial populations. | 2018 | 30272780 |
| 3248 | 7 | 0.9832 | Geographical resistome profiling in the honeybee microbiome reveals resistance gene transfer conferred by mobilizable plasmids. BACKGROUND: The spread of antibiotic resistance genes (ARGs) has been of global concern as one of the greatest environmental threats. The gut microbiome of animals has been found to be a large reservoir of ARGs, which is also an indicator of the environmental antibiotic spectrum. The conserved microbiota makes the honeybee a tractable and confined ecosystem for studying the maintenance and transfer of ARGs across gut bacteria. Although it has been found that honeybee gut bacteria harbor diverse sets of ARGs, the influences of environmental variables and the mechanism driving their distribution remain unclear. RESULTS: We characterized the gut resistome of two closely related honeybee species, Apis cerana and Apis mellifera, domesticated in 14 geographic locations across China. The composition of the ARGs was more associated with host species rather than with geographical distribution, and A. mellifera had a higher content of ARGs in the gut. There was a moderate geographic pattern of resistome distribution, and several core ARG groups were found to be prevalent among A. cerana samples. These shared genes were mainly carried by the honeybee-specific gut members Gilliamella and Snodgrassella. Transferrable ARGs were frequently detected in honeybee guts, and the load was much higher in A. mellifera samples. Genomic loci of the bee gut symbionts containing a streptomycin resistance gene cluster were nearly identical to those of the broad-host-range IncQ plasmid, a proficient DNA delivery system in the environment. By in vitro conjugation experiments, we confirmed that the mobilizable plasmids could be transferred between honeybee gut symbionts by conjugation. Moreover, "satellite plasmids" with fragmented genes were identified in the integrated regions of different symbionts from multiple areas. CONCLUSIONS: Our study illustrates that the gut microbiota of different honeybee hosts varied in their antibiotic resistance structure, highlighting the role of the bee microbiome as a potential bioindicator and disseminator of antibiotic resistance. The difference in domestication history is highly influential in the structuring of the bee gut resistome. Notably, the evolution of plasmid-mediated antibiotic resistance is likely to promote the probability of its persistence and dissemination. Video Abstract. | 2022 | 35501925 |
| 4023 | 8 | 0.9829 | The honeybee gut resistome and its role in antibiotic resistance dissemination. There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination. | 2023 | 36892101 |
| 3480 | 9 | 0.9829 | Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM(10)) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 10(4), 5.6 × 10(4) and 5.1 × 10(2) copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment. | 2022 | 35717091 |
| 6797 | 10 | 0.9829 | Supercarriers of antibiotic resistome in a world's large river. BACKGROUND: Antibiotic resistome has been found to strongly interact with the core microbiota in the human gut, yet little is known about how antibiotic resistance genes (ARGs) correlate with certain microbes in large rivers that are regarded as "terrestrial gut." RESULTS: By creating the integral pattern for ARGs and antibiotic-resistant microbes in water and sediment along a 4300-km continuum of the Yangtze River, we found that human pathogen bacteria (HPB) share 13.4% and 5.9% of the ARG hosts in water and sediment but contribute 64% and 46% to the total number of planktonic and sedimentary ARGs, respectively. Moreover, the planktonic HPB harbored 79 ARG combinations that are dominated by "natural" supercarriers (e.g., Rheinheimera texasensis and Noviherbaspirillum sp. Root189) in river basins. CONCLUSIONS: We confirmed that terrestrial HPB are the major ARG hosts in the river, rather than conventional supercarriers (e.g., Enterococcus spp. and other fecal indicator bacteria) that prevail in the human gut. The discovery of HPB as natural supercarriers in a world's large river not only interprets the inconsistency between the spatial dissimilarities in ARGs and their hosts, but also highlights the top priority of controlling terrestrial HPB in the future ARG-related risk management of riverine ecosystems globally. Video Abstract. | 2022 | 35897057 |
| 3642 | 11 | 0.9828 | Genomic insights into antibiotic-resistance and virulence genes of Enterococcus faecium strains from the gut of Apis mellifera. Enterococcus faecium is a lactic acid bacterium that confers beneficial health effects in humans. However, lately, a number of E. faecium strains have been linked to the spread of nosocomial infections in the hospital environment. Therefore, any potential commercial usage of E. faecium isolates should be preceded by an assessment of infection risk. In the current study, the genomes of two novel E. faecium strains Am1 (larval isolate) and Bee9 (adult bee isolate) isolated from the gut of Apis mellifera L. (honeybee) were sequenced to allow evaluation of their safety. In particular, their genomes were screened for antibiotic-resistance and virulence genes. In addition, their potential to spread resistance in the environment was evaluated. The analysis revealed that Am1 and Bee9 possess 2832 and 2844 protein-encoding genes, respectively. In each case, the genome size was 2.7 Mb with a G+C content of 37.9 mol%. Comparative analysis with probiotic, non-pathogenic and pathogenic enterococci revealed that there are variations between the two bee E. faecium isolates and pathogenic genomes. They were, however, closely linked to the probiotic comparison strains. Phenotypically, the Am1 and Bee9 strains were susceptible to most antibiotics tested, but showed intermediate sensitivity towards erythromycin, linezolid and trimethoprim/sulfamethoxazole. Notably, no genes associated with antibiotic resistance in clinical isolates (e.g. vancomycin resistance: vanA, vanB, vanS, vanX and vanY) were present. In addition, the insertion sequences (IS16, ISEfa11 and ISEfa5), acting as molecular pathogenicity markers in clinically relevant E. faecium strains, were also absent. Moreover, the analysis revealed the absence of three key pathogenicity-associated genes (acm, sgrA, ecbA) in the Am1 and Bee9 strains that are found in the prominent clinical isolates DO, V1836, Aus0004 and Aus0085. Overall, the findings of this investigation suggest that the E. faecium isolates from the bee gut have not suffered any recent clinically relevant antibiotic exposure. It also suggests that E. faecium Am1 and Bee9 are safe potential probiotic strains, because they lack the phenotypic and genetic features associated with strains eliciting nosocomial infections. | 2022 | 36374179 |
| 7036 | 12 | 0.9827 | Role of Bentonite on the Mobility of Antibiotic Resistance Genes, and Microbial Community in Oxytetracycline and Cadmium Contaminated Soil. The effects of bentonite (BT), a commonly used heavy metal deactivator, on the ARGs and microbial communities in soils and lettuce systems contaminated by heavy metals and antibiotics are unclear. A study was conducted to investigate the effect of BT on the mobility of antibiotic resistance genes in oxytetracycline and cadmium contaminated soil. Results showed that the addition of BT reduced the accumulation of OTC and ARGs in the soil and lettuce roots, but increased the abundance of ARGs in lettuce leaves, and increase the risk of human pathogenic bacteria (HPB) transferring to lettuce leaves. Redundancy analysis showed that environmental factors (OTC, H(2)O, SOM, and pH) were the dominant factors that influence the distribution of ARGs and intI1. Network analysis showed that Proteobacteria and Bacteroidetes were the major host bacteria which caused changes in ARGs and intI1. There were significant positive correlations between ermX and ermQ, and a large number of HPB. The co-occurrence of intl1 with some ARGs (tetC, tetG, ermQ, sul1, and sul2), may threaten human health due to the dispersion of ARGs via horizontal gene transfer. | 2018 | 30546348 |
| 7219 | 13 | 0.9826 | Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: A case study of northern Ningxia Plain, China. Agricultural soils are important source and sink of antibiotic resistance genes (ARGs). However, little is known about the fate of ARGs in dryland soils, while its human exposure risks were seriously overlooked. Taking the northern Ningxia Plain as a case, this study explored the occurrence of ARGs and its relationship with mobile genetic elements (MGEs), pathogens, and environmental factors. Furthermore, the concentrations of airborne ARGs by soil wind erosion and the human exposure doses of soil ARGs were evaluated. The results showed the abundances of different regions ranged from 4.0 × 10(5) to 1.6 × 10(6) copies/g. Soil ARGs are driven by MGEs, but multiply impacted by soil properties, nutrition, and bacterial community. Vibrio metschnikovii, Acinetobacter schindleri, and Serratia marcescens are potential pathogenic hosts for ARGs. Further exploration revealed the concentration of ARGs loaded in dust by soil wind erosion reached more than 10(5) copies/m(3), which were even higher than those found in sewage treatment plants and hospitals. Skin contact is the primary route of ARGs exposure, with a maximum dose of 24071.33 copies/kg/d, which is largely attributed to ARGs loaded in dust. This study bridged the gap on ARGs in dryland soils, and provided reference for human exposure risk assessment of soil ARGs. | 2024 | 39276744 |
| 7650 | 14 | 0.9826 | Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In the field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids were applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: at harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than hay from unamended control plots. The fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids resulted in a few gene targets being more abundant in hay during the first harvest. Fermentation of hay resulted in an increase in the abundance of gene targets, but this occurred with hay from both the amended and control plots. Overall, the application of fecal amendments resulted in an increase in the abundance of some gene targets associated with antibiotic resistance in the first cut hay. | 2022 | 35020524 |
| 8030 | 15 | 0.9826 | Application of manure containing tetracyclines slowed down the dissipation of tet resistance genes and caused changes in the composition of soil bacteria. Manure application contributes to the increased environmental burden of antibiotic resistance genes (ARGs). We investigated the response of tetracycline (tet) resistance genes and bacterial taxa to manure application amended with tetracyclines over two months. Representative tetracyclines (oxytetracycline, chlorotetracycline and doxycycline), tet resistance genes (tet(M), tet(O), tet(W), tet(S), tet(Q) and tet(X)) and bacterial taxa in the untreated soil, +manure, and +manure+tetracyclines groups were analyzed. The abundances of all tet resistance genes in the +manure group were significantly higher than those in the untreated soil group on day 1. The abundances of all tet resistance genes (except tet(Q) and tet(X)) were significantly lower in the +manure group than those in the +manure+tetracyclines group on day 30 and 60. The dissipation rates were higher in the +manure group than those in the +manure+tetracyclines group. Disturbance of soil bacterial community composition imposed by tetracyclines was also observed. The results indicated that tetracyclines slowed down the dissipation of tet resistance genes in arable soil after manure application. Application of manure amended with tetracyclines may provide a significant selective advantage for species affiliated to the taxonomical families of Micromonosporaceae, Propionibacteriaceae, Streptomycetaceae, Nitrospiraceae and Clostridiaceae. | 2018 | 28898804 |
| 3715 | 16 | 0.9826 | Deposition of resistant bacteria and resistome through FMT in germ-free piglets. Faecal microbiota transplantation (FMT) has received considerable attention in recent years due to its remarkable efficacy in restoring a normal gut microbiome. Here, we established the groups of post-FMT recipient piglets using germ-free piglets during early life to characterize the colonization of gut microbiota composition and the enrichment of resistance gene acquisition. By metagenomic analysis, we identified 115 bacterial phyla and 2111 bacterial genera that were acquired by the FMT recipients. We found that early-life microbial colonization and the spread of resistomes in recipient piglets were age dependent. A total of 425, 425 and 358 AR genes primarily belonging to 114, 114 and 102 different types were detected in the donors, post-FMT recipients in the FMT-3D group and post-FMT recipients in the FMT-15D group respectively. Genes that encoded tetracycline, macrolide and chloramphenicol resistance proteins were the most dominant AR genes, and the results corresponded with the exposure of antibiotic consumption at farm. Bacteroides, Escherichia, Clostridium, Parabacteroides, Treponema, Lactobacillus and Enterococcus were significantly correlated with the distribution of AR genes. More importantly, the relative abundance of AR genes was positively correlated with the levels of mobile genetic elements. Our results indicate that early-life microbial colonization can persistently shape the gut microbiota and antibiotic resistome. | 2021 | 33894059 |
| 7152 | 17 | 0.9826 | Aerosolization behavior of antimicrobial resistance in animal farms: a field study from feces to fine particulate matter. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway. | 2023 | 37152737 |
| 7162 | 18 | 0.9826 | Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. | 2018 | 29860105 |
| 3654 | 19 | 0.9826 | Distribution of Antibiotic Resistance Genes in the Saliva of Healthy Omnivores, Ovo-Lacto-Vegetarians, and Vegans. Food consumption allows the entrance of bacteria and their antibiotic resistance (AR) genes into the human oral cavity. To date, very few studies have examined the influence of diet on the composition of the salivary microbiota, and even fewer investigations have specifically aimed to assess the impact of different long-term diets on the salivary resistome. In this study, the saliva of 144 healthy omnivores, ovo-lacto-vegetarians, and vegans were screened by nested PCR for the occurrence of 12 genes conferring resistance to tetracyclines, macrolide-lincosamide-streptogramin B, vancomycin, and β-lactams. The tet(W), tet(M), and erm(B) genes occurred with the highest frequencies. Overall, no effect of diet on AR gene distribution was seen. Some differences emerged at the recruiting site level, such as the higher frequency of erm(C) in the saliva of the ovo-lacto-vegetarians and omnivores from Bologna and Turin, respectively, and the higher occurrence of tet(K) in the saliva of the omnivores from Bologna. A correlation of the intake of milk and cheese with the abundance of tet(K) and erm(C) genes was seen. Finally, when the occurrence of the 12 AR genes was evaluated along with geographical location, age, and sex as sources of variability, high similarity among the 144 volunteers was seen. | 2020 | 32961926 |