HISTORY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
836200.9973Lifestyle evolution in symbiotic bacteria: insights from genomics. Bacteria that live only in eukaryotic cells and tissues, including chronic pathogens and mutualistic bacteriocyte associates, often possess a distinctive set of genomic traits, including reduced genome size, biased nucleotide base composition and fast polypeptide evolution. These phylogenetically diverse bacteria have lost certain functional categories of genes, including DNA repair genes, which affect mutational patterns. However, pathogens and mutualistic symbionts retain loci that underlie their unique interaction types, such as genes enabling nutrient provisioning by mutualistic bacteria-inhabiting animals. Recent genomic studies suggest that many of these bacteria are irreversibly specialized, precluding shifts between pathogenesis and mutualism.200010884696
923810.9972Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches.200212555790
934620.9972Horizontal gene transfer in prokaryotes: quantification and classification. Comparative analysis of bacterial, archaeal, and eukaryotic genomes indicates that a significant fraction of the genes in the prokaryotic genomes have been subject to horizontal transfer. In some cases, the amount and source of horizontal gene transfer can be linked to an organism's lifestyle. For example, bacterial hyperthermophiles seem to have exchanged genes with archaea to a greater extent than other bacteria, whereas transfer of certain classes of eukaryotic genes is most common in parasitic and symbiotic bacteria. Horizontal transfer events can be classified into distinct categories of acquisition of new genes, acquisition of paralogs of existing genes, and xenologous gene displacement whereby a gene is displaced by a horizontally transferred ortholog from another lineage (xenolog). Each of these types of horizontal gene transfer is common among prokaryotes, but their relative contributions differ in different lineages. The fixation and long-term persistence of horizontally transferred genes suggests that they confer a selective advantage on the recipient organism. In most cases, the nature of this advantage remains unclear, but detailed examination of several cases of acquisition of eukaryotic genes by bacteria seems to reveal the evolutionary forces involved. Examples include isoleucyl-tRNA synthetases whose acquisition from eukaryotes by several bacteria is linked to antibiotic resistance, ATP/ADP translocases acquired by intracellular parasitic bacteria, Chlamydia and Rickettsia, apparently from plants, and proteases that may be implicated in chlamydial pathogenesis.200111544372
842230.9972Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.202032432548
934740.9971Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. Horizontal gene transfer (HGT) can create diversity in the genetic repertoire of a lineage. Successful gene transfer likely occurs more frequently between more closely related organisms, leading to the formation of higher-level exchange groups that in some respects are comparable to single-species populations. Genes that appear fixed in a single species can be replaced through distant homologs or iso-functional analogs acquired through HGT. These genes may originate from other species or they may be acquired by an individual strain from the species pan-genome. Because of their similarity to alleles in a population, we label these gene variants that are exchanged between related species as homeoalleles. In a case study, we show that biased gene transfer plays an important role in the evolution of aminoacyl-tRNA synthetases (aaRS). Many microorganisms make use of these genes against naturally occurring antibiotics. We suggest that the resistance against naturally occurring antibiotics is the likely driving force behind the frequent switching between divergent aaRS types and the reason for the maintenance of these homeoalleles in higher-level exchange groups. Resistance to naturally occurring antibiotics may lead to the maintenance of different types of aminoacyl-tRNA synthetases in Bacteria through gene transfer.201121521245
937650.9971Historical Contingency Drives Compensatory Evolution and Rare Reversal of Phage Resistance. Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria-phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.202235994371
917360.9971Bacterial defences: mechanisms, evolution and antimicrobial resistance. Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.202337095190
958370.9971Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.202033170167
923780.9970The gossip paradox: Why do bacteria share genes? Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely?202235603365
958090.9970Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem.202337054512
9371100.9970Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria. Understanding how the historical contingency of biotic interactions shapes the evolvability of bacterial populations is imperative for the predictability of the eco-evolutionary dynamics of microbial communities. While microbial predators like Myxococcus xanthus influence the frequency of antibiotic-resistant bacteria in nature, the effect of adaptation to the presence of predators on the evolvability of prey bacteria to future stressors is unclear. Hence, to understand the influence of the coevolutionary history of predation on the evolvability of antibiotic resistance, we propagated variants of E. coli, pre-adapted to distinct biotic and abiotic conditions, in gradually increasing concentrations of antibiotics. We show that pre-adaptation to predators limits the evolution of a high degree of antibiotic resistance. Moreover, lower degree of resistance in the evolved strains also incurs reduced fitness costs while preserving their ancestral ability to resist predation. Together, we demonstrate that the history of biotic interactions can strongly influence the evolvability of bacteria.202540461734
9581110.9970Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process.201727706829
8429120.9970Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BACKGROUND: Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. RESULTS: By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). CONCLUSION: After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria.200516242020
9344130.9970A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Arsenic is a ubiquitous element in the environment, a source of constant evolutionary pressure on organisms. The arsenic resistance machinery is thoroughly described for bacteria. Highly resistant lineages are also common in eukaryotes, but evolutionary knowledge is much more limited. While the origin of the resistance machinery in eukaryotes is loosely attributed to horizontal gene transfer (HGT) from bacteria, only a handful of eukaryotes were deeply studied. Here we investigate the origin and evolution of the core genes in arsenic resistance in eukaryotes using a broad phylogenetic framework. We hypothesize that, as arsenic pressure is constant throughout Earth's history, resistance mechanisms are probably ancestral to eukaryotes. We identified homologs for each of the arsenic resistance genes in eukaryotes and traced their possible origin using phylogenetic reconstruction. We reveal that: i. an important component of the arsenic-resistant machinery originated before the last eukaryotic common ancestor; ii. later events of gene duplication and HGT generated new homologs that, in many cases, replaced ancestral ones. Even though HGT has an important contribution to the expansion of arsenic metabolism in eukaryotes, we propose the hypothesis of ancestral origin and differential retention of arsenic resistance mechanisms in the group. Key-words: Environmental adaptation; resistance to toxic metalloids; detoxification; comparative genomics; functional phylogenomics.202235533945
9490140.9970The superbugs: evolution, dissemination and fitness. Since the introduction of antibiotics, bacteria have not only evolved elegant resistance mechanisms to thwart their effect, but have also evolved ways in which to disseminate themselves or their resistance genes to other susceptible bacteria. During the past few years, research has revealed not only how such resistance mechanisms have been able to evolve and to rapidly disseminate, but also how bacteria have, in some cases, been able to adapt to this new burden of resistance with little or no cost to their fitness. Such adaptations make the control of these superbugs all the more difficult.199810066531
9345150.9970Replacement of the arginine biosynthesis operon in Xanthomonadales by lateral gene transfer. The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the gamma-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.200818305979
9366160.9970Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild-type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild-type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to "keep-up" with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild-type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild-type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short-lived. More generally, the results demonstrate that coevolving enemies may escape from Red-Queen dynamics.201020497216
9691170.9969Defining pathogenic bacterial species in the genomic era. Actual definitions of bacterial species are limited due to the current criteria of definition and the use of restrictive genetic tools. The 16S ribosomal RNA sequence, for example, has been widely used as a marker for phylogenetic analyses; however, its use often leads to misleading species definitions. According to the first genetic studies, removing a certain number of genes from pathogenic bacteria removes their capacity to infect hosts. However, more recent studies have demonstrated that the specialization of bacteria in eukaryotic cells is associated with massive gene loss, especially for allopatric endosymbionts that have been isolated for a long time in an intracellular niche. Indeed, sympatric free-living bacteria often have bigger genomes and exhibit greater resistance and plasticity and constitute species complexes rather than true species. Specialists, such as pathogenic bacteria, escape these bacterial complexes and colonize a niche, thereby gaining a species name. Their specialization allows them to become allopatric, and their gene losses eventually favor reductive genome evolution. A pathogenic species is characterized by a gene repertoire that is defined not only by genes that are present but also by those that are lacking. It is likely that current bacterial pathogens will disappear soon and be replaced by new ones that will emerge from bacterial complexes that are already in contact with humans.201021687765
9582180.9969Humans and Microbes: A Systems Theory Perspective on Coevolution. The issue of rapid adaptation of microorganisms to changing environments is examined. The mechanism of adaptive mutations is analyzed. The possibility that horizontal gene transfer is a random process is discussed. Bacteria, unicellular fungi, and other microorganisms successfully adapt to fast-changing conditions (such as exposure to drugs) because their evolution is not a random process. Adaptation to antibiotics, adaptive mutations, and related phenomena occur because microbial evolution is inherently directed and purposefully oriented toward potential external changes. Rejecting gene-centricity plays a crucial role in understanding the coevolution of humans and pathogens. This means that beyond genes, there exists a higher-level system-an organism with its own unique properties that cannot be reduced to genes. The problem of human adaptation to infectious agents (viruses, bacteria, and protozoa) is also analyzed. Based on general systems theory, it is concluded that humans and pathogens coevolve in a controlled manner.202541176022
9342190.9969Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.202134542714