HGLYRICHIN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
905600.8888Antibacterial potential of hGlyrichin encoded by a human gene. Emerging multidrug-resistant (MDR) bacteria are an enormous threat to human life because of their resistance to currently available antibiotics. The genes encoding antibacterial peptides have been studied extensively and are excellent candidates for a new generation of antibiotic drugs to fight MDR bacteria. In contrast to traditional antibiotics, antibacterial peptides, which do not cause drug resistance, have an unparalleled advantage. However, because most antibacterial peptides originate in species other than humans, the hetero-immunological rejection of antibacterial peptides is a key disadvantage that limits their clinical application. In this study, we identify hGlyrichin as a potential human antibacterial polypeptide. The hGlyrichin polypeptide kills a variety of bacteria including the MDR bacteria methicillin-resistant Staphylococcus aureus, MDR Pseudomonas aeruginosa, and MDR tubercle bacillus. A 19 amino acid peptide (pCM19) at positions 42-60 of hGlyrichin is crucial for its antibacterial activity. The hGlyrichin polypeptide kills bacteria through the destruction of the bacterial membrane. In addition, all peptides that are homologous to hGlyrichin have antibacterial activity and can penetrate the bacterial membrane. Importantly, hGlyrichin does not cause hemolytic side effects in vitro or in vivo. Therefore, based on the virtues of hGlyrichin, i.e., the absence of hetero-immunological rejection and hemolytic side effects and the unambiguous efficacy of killing pathogenic MDR bacteria, we propose hGlyrichin as a potential human antibacterial polypeptide.201222083756
61110.8795The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.201728728970
815920.8779Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications.202336748912
905530.8770siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection. Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.202540054457
20440.8767RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.201526427881
62050.8760Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.202234902269
905760.8752ABD-3, the confluence of powerful antibacterial modalities: ABDs delivering and expressing lss, the gene encoding lysostaphin. In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.202439072634
909770.8751Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. In response to the dramatically increasing antimicrobial resistance, a series of new symmetric peptides were designed and synthesized in this study by a "WWW" motif as the symmetric center, arginine as the positive charge amino acid and the terminus symmetrically tagged with hydrophobic amino acids. Amongst the new symmetric peptide FRRW (FRRWWWRRF-NH(2)) presented the highest cell selectivity for bacteria over mammalian cell and exerted excellent antimicrobial potential against a broad of bacteria, especially difficult-to-kill multidrug-resistant strains clinical isolates. FRRW also displayed perfect stability in physiological salt ions and rapid killing speed as well as acted on multiple mechanisms including non-receptor mediated membrane and intra-molecular mechanisms. Importantly, FRRW emerged a low tendency of resistance in contrast to traditional antibiotics ciprofloxacin and gentamicin. What's more, FRRW could resist or alleviate or even reverse the ciprofloxacin- and gentamicin-resistance by changing the permeability of bacterial membrane and inhibiting the efflux pumps of bacteria. Furthermore, FRRW exhibited remarkable effectiveness and higher safety in vivo than polymyxin B. In summary, the new symmetric peptide FRRW was promised to be as a new antimicrobial candidate for overcoming the increasing bacterial resistance.202133610592
11880.8751Trichlorination of a Teicoplanin-Type Glycopeptide Antibiotic by the Halogenase StaI Evades Resistance. Glycopeptide antibiotics (GPAs) include clinically important drugs used for the treatment of infections caused by Gram-positive pathogens. These antibiotics are specialized metabolites produced by several genera of actinomycete bacteria. While many GPAs are highly chemically modified, A47934 is a relatively unadorned GPA lacking sugar or acyl modifications, common to other members of the class, but which is chlorinated at three distinct sites. The biosynthesis of A47934 is encoded by a 68-kb gene cluster in Streptomyces toyocaensis NRRL 15009. The cluster includes all necessary genes for the synthesis of A47934, including two predicted halogenase genes, staI and staK In this study, we report that only one of the halogenase genes, staI, is necessary and essential for A47934 biosynthesis. Chlorination of the A47934 scaffold is important for antibiotic activity, as assessed by binding affinity for the target N-acyl-d-Ala-d-Ala. Surprisingly, chlorination is also vital to avoid activation of enterococcal and Streptomyces VanB-type GPA resistance through induction of resistance genes. Phenotypic assays showed stronger induction of GPA resistance by the dechlorinated compared to the chlorinated GPA. Correspondingly, the relative expression of the enterococcal vanA resistance gene was shown to be increased by the dechlorinated compared to the chlorinated compound. These results provide insight into the biosynthesis of GPAs and the biological function of GPA chlorination for this medically important class of antibiotic.201830275088
77990.8749The menaquinone pathway is important for susceptibility of Staphylococcus aureus to the antibiotic adjuvant, cannabidiol. Emergence of antibiotic resistant bacteria is evolving at an alarming pace; therefore, we must start turning to alternative approaches. One of these, could be the use of antibiotic adjuvants that enhances the effect of antibiotics towards resistant bacteria. A novel antibiotic adjuvant is cannabidiol (CBD), which we have previously shown can enhance the effect of bacitracin (BAC). BAC targets cell wall synthesis by inhibiting dephosphorylation of the lipid carrier undecaprenyl pyrophosphate prior to recycling across the membrane. However, the mechanism underlying this CBD mediated potentiation of BAC has remained unknown. To explore this, we examined resistance to CBD in Staphylococcus aureus through daily exposures to CBD. By subsequent whole genome sequencing, we observed multiple genes to be mutated, including the farE/farR system encoding a fatty acid efflux pump (FarE) and its regulator (FarR). Importantly, recreation of mutations in these genes showed decreased susceptibility towards the combination of CBD and BAC. Furthermore, we searched the Nebraska Transposon Mutant Library for CBD susceptible strains and identified menH encoding a protein participating in menaquinone biosynthesis. Strains containing deletions in this and other menaquinone related genes showed increased susceptibility towards CBD, while addition of exogenous menaquinone reversed the effect and reduced susceptible towards CBD. These results suggest that CBD potentiates BAC by redirecting the isoprenoid precursor isopentenyl pyrophosphate towards production of menaquinone rather than the lipid carrier undecaprenyl pyrophosphate, which dephosphorylation is inhibited by BAC. This in turn might decrease the level of undecaprenyl pyrophosphate thus enhancing the effect of BAC. Our study illustrates how antibiotic adjuvants may apply to enhance efficacy of antimicrobial compounds.202235091344
9026100.8747Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. With an upsurge in multidrug resistant bacteria backed by biofilm defence armours, there is a desperate need of new antibiotics with a non-traditional mechanism of action. Targeting bacteria by misguiding them or halting their communication is a new approach that could offer a new way to combat the multidrug resistance problem. Quorum sensing is considered to be the achilles heel of bacteria that has a lot to offer. Since, both quorum sensing and biofilm formation have been related to drug resistance and pathogenicity, in this study we synthesised new derivatives of citral with antiquorum sensing and biofilm disrupting properties. We previously reported antimicrobial and antiquorum sensing activity of citral and herein we report the synthesis and evaluation of citral and its derivatives (CD1-CD3) for antibacterial, antibiofilm and antiquorum sensing potential against Chromobacterium violaceum using standard methods. Preliminary results revealed that CD1 is the most active of all the derivatives. Qualitative and quantitative evaluation of antiquorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for CD1 followed by CD2, CD3 and citral. These compounds also inhibit biofilm formation at subinhibitory concentrations without causing any bacterial growth inhibition. These results were replicated by RT-qPCR with down regulation of the quorum sensing genes when C. violaceum was treated with these test compounds. Overall, the results are quite encouraging, revealing that biofilm and quorum sensing are interrelated processes and also indicating the potential of these derivatives to impede bacterial communication and biofilm formation.202133392626
9094110.8746Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria.201930632740
607120.8745A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here, we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa; in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation (Dsb) (i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copper-binding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR. The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5'-TTA-N(8)-TTAA-3', is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.202236546013
8158130.8745Nanobioconjugates: Weapons against Antibacterial Resistance. The increase in drug resistance in pathogenic bacteria is emerging as a global threat as we swiftly edge toward the postantibiotic era. Nanobioconjugates have gained tremendous attention to treat multidrug-resistant (MDR) bacteria and biofilms due to their tunable physicochemical properties, drug targeting ability, enhanced uptake, and alternate mechanisms of drug action. In this review, we highlight the recent advances made in the use of nanobioconjugates to combat antibacterial resistance and provide crucial insights for designing nanomaterials that can serve as antibacterial agents for nanotherapeutics, nanocargos for targeted antibiotic delivery, or both. Also discussed are different strategies for treating robust biofilms formed by bacteria.202035019602
7875140.8740Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment.202439566627
6789150.8740Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650.202439490844
5174160.8740Characterization of ES10 lytic bacteriophage isolated from hospital waste against multidrug-resistant uropathogenic E. coli. Escherichia coli is the major causative agent of urinary tract infections worldwide and the emergence of multi-drug resistant determinants among clinical isolates necessitates the development of novel therapeutic agents. Lytic bacteriophages efficiently kill specific bacteria and seems promising approach in controlling infections caused by multi-drug resistant pathogens. This study aimed the isolation and detailed characterization of lytic bacteriophage designated as ES10 capable of lysing multidrug-resistant uropathogenic E. coli. ES10 had icosahedral head and non-contractile tail and genome size was 48,315 base pairs long encoding 74 proteins. Antibiotics resistance, virulence and lysogenic cycle associated genes were not found in ES10 phage genome. Morphological and whole genome analysis of ES10 phage showed that ES10 is the member of Drexlerviridae. Latent time of ES10 was 30 min, burst size was 90, and optimal multiplicity of infection was 1. ES10 was stable in human blood and subsequently caused 99.34% reduction of host bacteria. Calcium chloride shortened the adsorption time and latency period of ES10 and significantly inhibited biofilm formation of host bacteria. ES10 caused 99.84% reduction of host bacteria from contaminated fomites. ES10 phage possesses potential to be utilized in standard phage therapy.202438525078
9058170.8739Antisense Agents against Antibiotic-resistant Bacteria. The dramatically increasing levels of antibiotic resistance are being seen worldwide and are a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-related technologies include oligonucleotides that interfere with gene transcription and expression; these oligonucleotides can help treat antibiotic-resistant bacteria. The important oligonucleotides include Peptide Nucleic Acids (PNAs), Phosphorodiamidate Morpholino Oligomers (PPMOs), and Locked Nucleic Acids (LNAs). Typically, the size of these structures (oligonucleotides) is 10 to 20 bases. PNAs, PPMOs, and LNAs are highlighted in this review as targets for genes that cause the gene to be destroyed and impede bacterial growth. These results open a new perspective for therapeutic intervention. Future studies need to examine different aspects of antisense agents, such as the safety, toxicity, and pharmacokinetic properties of antisense agents in clinical treatment.202235034590
501180.8737Centromere anatomy in the multidrug-resistant pathogen Enterococcus faecium. Multidrug-resistant variants of the opportunistic human pathogen Enterococcus have recently emerged as leading agents of nosocomial infection. The acquisition of plasmid-borne resistance genes is a driving force in antibiotic-resistance evolution in enterococci. The segregation locus of a high-level gentamicin-resistance plasmid, pGENT, in Enterococcus faecium was identified and dissected. This locus includes overlapping genes encoding PrgP, a member of the ParA superfamily of segregation proteins, and PrgO, a site-specific DNA binding homodimer that recognizes the cenE centromere upstream of prgPO. The centromere has a distinctive organization comprising three subsites, CESII separates CESI and CESIII, each of which harbors seven TATA boxes spaced by half-helical turns. PrgO independently binds both CESI and CESIII, but with different affinities. The topography of the complex was probed by atomic force microscopy, revealing discrete PrgO foci positioned asymmetrically at the CESI and CESIII subsites. Bending analysis demonstrated that cenE is intrinsically curved. The organization of the cenE site and of certain other plasmid centromeres mirrors that of yeast centromeres, which may reflect a common architectural requirement during assembly of the mitotic apparatus in yeast and bacteria. Moreover, segregation modules homologous to that of pGENT are widely disseminated on vancomycin and other resistance plasmids in enterococci. An improved understanding of segrosome assembly may highlight new interventions geared toward combating antibiotic resistance in these insidious pathogens.200818245388
9025190.8737BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.202134108601