HERPES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
28700.9446Reversion of mutations in the thymidine kinase gene in herpes simplex viruses resistant to phosphonoacetate. Mutations in the DNA polymerase locus of phage, bacteria, and eukaryotic may change the mutation rates at other loci of the genome. We used resistance to phosphonoacetate to select mutants of herpes simplex virus with mutated DNA polymerase and then determined the reversion frequency of viral thymidine kinase mutation in mutants and recombinants. The results obtained indicate that mutations causing resistance to phosphonoacetate do not affect the mutation rate of the viral genes. This finding is consistent with the existence of two functional regions in the DNA polymerase molecule, one involving the pyrophosphate acceptor site and responsible for resistance to phosphonoacetate and another involved in the editing ability and recognition specificity of the enzyme.19846331620
818310.9444Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
939220.9443CNproScan: Hybrid CNV detection for bacterial genomes. Discovering copy number variation (CNV) in bacteria is not in the spotlight compared to the attention focused on CNV detection in eukaryotes. However, challenges arising from bacterial drug resistance bring further interest to the topic of CNV and its role in drug resistance. General CNV detection methods do not consider bacteria's features and there is space to improve detection accuracy. Here, we present a CNV detection method called CNproScan focused on bacterial genomes. CNproScan implements a hybrid approach and other bacteria-focused features and depends only on NGS data. We benchmarked our method and compared it to the previously published methods and we can resolve to achieve a higher detection rate together with providing other beneficial features, such as CNV classification. Compared with other methods, CNproScan can detect much shorter CNV events.202134224809
998330.9443A new drug design strategy: Killing drug resistant bacteria by deactivating their hypothetical genes. Despite that a bacterial genome is complicated by large numbers of horizontally transferred (HT) genes and function unknown hypothetical (FUN) genes, the Genic-Transcriptional-Stop-Signals-Ratio (TSSR) of a genome shows that HT and FUN genes are complementary to all other genes in the genome. When HT or certain FUN genes are omitted from the Escherichia coli K-12 genome, its Genomic-TSSR value becomes totally incomparable to other E. coli strains. The Genic-TSSR correlation tree of a pathogen shows that some FUN genes would form a unique cluster. Removing these genes by site-specific mutation or gene-knockout should lead to the demise of this pathogen.201627901648
57540.9443Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.19968955293
28650.9442Plasmid rescue - a tool for reproducible recovery of genes from transfected mammalian cells? The efficient rescue of plasmids containing the thymidine kinase gene (tk) of Herpes simplex virus type I from genetically transformed mouse cells by transformation of bacteria is described. Rescued plasmids contain insertions of calf DNA used as a carrier in the transfection but usually lack portions of plasmid DNA. Deletions generally concern the region spanning from around the PvuII site of pBR322 to within the tetracycline resistance coding sequence, whereas the extent of tk sequence deletion varies, depending on the site of its integration (BamHI or PvuII) into the plasmid. Modelling the rescue process by transformation of bacteria with a mixture of original plasmids and sheared mouse cell DNA clearly demonstrates that deletions are caused by the presence of the mammalian DNA and they probably occur during re-transformation of bacteria before the onset of tetracycline gene expression. Plasmids lacking the Tcr region are reproducibly rescuable without deletion. Methods for reproducible re-isolation of transferred genes from mammalian cells are discussed.19846323922
998060.9442A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate.19989776589
57070.9440Genetic instability and methylation tolerance in colon cancer. Microsatellite instability was first identified in colon cancer and later shown to be due to mutations in genes responsible for correction of DNA mismatches. Several human mismatch correction genes that are homologous to those of yeast and bacteria have been identified and are mutated in families affected by the hereditary non-polyposis colorectal carcinoma (HNPCC) syndrome. Similar alterations have been also found in some sporadic colorectal cancers. The mismatch repair pathway corrects DNA replication errors and repair-defective colorectal carcinoma cell lines exhibit a generalized mutator phenotype. An additional consequence of mismatch repair defects is cellular resistance, or tolerance, to certain DNA damaging agents.19968967715
10580.9437Resistance of the cholera vaccine candidate IEM108 against CTXPhi infection. The cholera toxin (CT) genes ctxAB are carried on a lysogenic phage of Vibrio cholerae, CTXPhi, which can transfer ctxAB between toxigenic and nontoxigenic strains of bacteria. This transfer may pose a problem when live oral cholera vaccine is given to people in epidemic areas, because the toxin genes can be reacquired by the vaccine strains. To address this problem, we have constructed a live vaccine candidate, IEM108, which carries an El Tor-derived rstR gene. This gene encodes a repressor and can render bacterial resistance to CTXPhi infection. In this study, we evaluated the resistance of IEM108 against CTXPhi infection by using a CTXPhi marked for chloramphenicol (CAF) resistance and an in vivo model. We found that the cloned rstR gene rendered IEM108 immune to infection with the marked CTXPhi. In addition, the infection rate of IEM108 was even lower than that of the native CTXPhi-positive strain. These results suggest that the vaccine candidate IEM108 is resistant to infection by CTXPhi.200616343705
19690.9436A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.200818502856
502100.9436A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands.201222740651
8424110.9435Postseptational chromosome partitioning in bacteria. Mutations in the spoIIIE gene prevent proper partitioning of one chromosome into the developing prespore during sporulation but have no overt effect on partitioning in vegetatively dividing cells. However, the expression of spoIIIE in vegetative cells and the occurrence of genes closely related to spoIIIE in a range of nonsporulating eubacteria suggested a more general function for the protein. Here we show that SpoIIIE protein is needed for optimal chromosome partitioning in vegetative cells of Bacillus subtilis when the normal tight coordination between septation and nucleoid partitioning is perturbed or when septum positioning is altered. A functional SpoIIIE protein allows cells to recover from a state in which their chromosome has been trapped by a closing septum. By analogy to its function during sporulation, we suggest that SpoIIIE facilitates partitioning by actively translocating the chromosome out of the septum. In addition to enhancing the fidelity of nucleoid partitioning, SpoIIIE also seems to be required for maximal resistance to antibiotics that interfere with DNA metabolism. The results have important implications for our understanding of the functions of genes involved in the primary partitioning machinery in bacteria and of how septum placement is controlled.19957567988
9984120.9433Multiplex base editing to convert TAG into TAA codons in the human genome. Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here we take the first steps to extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and highly multiplex editing in mammalian cells.202235918324
605130.9432Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370
8422140.9429Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs.202032432548
9238150.9429Sexual isolation and speciation in bacteria. Like organisms from all other walks of life, bacteria are capable of sexual recombination. However, unlike most plants and animals, bacteria recombine only rarely, and when they do they are extremely promiscuous in their choice of sexual partners. There may be no absolute constraints on the evolutionary distances that can be traversed through recombination in the bacterial world, but interspecies recombination is reduced by a variety of factors, including ecological isolation, behavioral isolation, obstacles to DNA entry, restriction endonuclease activity, resistance to integration of divergent DNA sequences, reversal of recombination by mismatch repair, and functional incompatibility of recombined segments. Typically, individual bacterial species are genetically variable for most of these factors. Therefore, natural selection can modulate levels of sexual isolation, to increase the transfer of genes useful to the recipient while minimizing the transfer of harmful genes. Interspecies recombination is optimized when recombination involves short segments that are just long enough to transfer an adaptation, without co-transferring potentially harmful DNA flanking the adaptation. Natural selection has apparently acted to reduce sexual isolation between bacterial species. Evolution of sexual isolation is not a milestone toward speciation in bacteria, since bacterial recombination is too rare to oppose adaptive divergence between incipient species. Ironically, recombination between incipient bacterial species may actually foster the speciation process, by prohibiting one incipient species from out-competing the other to extinction. Interspecific recombination may also foster speciation by introducing novel gene loci from divergent species, allowing invasion of new niches.200212555790
351160.9426Rapid and efficient cloning of proviral flanking fragments by kanamycin resistance gene complementation. We have developed a technique for the rapid cloning of unknown flanking regions of transgenic DNA. We complemented a truncated kanamycin resistance gene of a bacterial plasmid with a neomycin resistance gene fragment from a gene transfer vector. Optimized transformation conditions allowed us to directly select for kanamycin-resistant bacteria. We cloned numerous proviral flanking fragments from growth factor-independent cell mutants that were obtained after infection with a replication incompetent retroviral vector and identified integrations into the cyclin D2 and several unknown genomic sequences. We anticipate that our method could be adapted to various vector systems that are used to tag and identify genes and to map genomes.19999863001
823170.9426Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases.19938224883
333180.9425Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product.1978360222
279190.9424In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria.200212089013