HELPFUL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
349900.9968Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10(7)-6.88 × 10(8) copies per g sediment (1.27 × 10(-2)-3.39 × 10(-2) copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem.202133652188
696710.9965Effects of Pyroligneous Acid on Diversity and Dynamics of Antibiotic Resistance Genes in Alfalfa Silage. Antibiotic resistance genes (ARGs) are recognized as contaminants due to their potential risk for human and environment. The aim of the present study is to investigate the effects of pyroligneous acid (PA), a waste of biochar production, on fermentation characteristics, diversity, and dynamics of ARGs during ensiling of alfalfa using metagenomic analysis. The results indicated that PA decreased (P < 0.05) dry matter loss, pH value, gas production, coliform bacteria count, protease activity, and nonprotein-N, ammonia-N, and butyric acid contents and increased (P < 0.05) lactic acid content during ensiling. During fermentation, Bacteria, Firmicutes, and Lactobacillus were the most abundant at kingdom, phylum, and genus levels, respectively. Pyroligneous acid reduced the relative abundance of Bacteria and Firmicutes and increased that of Lactobacillus. The detected ARGs belonged to 36 drug classes, including mainly macrolides, tetracycline, lincosamides, and phenicol. These types of ARGs decreased during fermentation and were further reduced by PA. These types of ARGs were positively correlated (P < 0.05) with fermentation parameters like pH value and ammonia-N content and with bacterial communities. At the genus level, the top several drug classes, including macrolide, tetracycline, lincosamide, phenicol, oxazolidinone, streptogramin, pleuromutilin, and glycopeptide, were positively correlated with Staphylococcus, Streptococcus, Listeria, Bacillus, Klebsiella, Clostridium, and Enterobacter, the potential hosts of ARGs. Overall, ARGs in alfalfa silage were abundant and were influenced by the fermentation parameters and microbial community composition. Ensiling could be a feasible way to mitigate ARGs in forages. The addition of PA could not only improve fermentation quality but also reduce ARG pollution of alfalfa silage. IMPORTANCE Antibiotic resistance genes (ARGs) are considered environmental pollutants posing a potential human health risk. Silage is an important and traditional feed, mainly for ruminants. ARGs in silages might influence the diversity and distribution of ARGs in animal intestinal and feces and then the manure and the manured soil. However, the diversity and dynamics of ARGs in silage during fermentation are still unknown. We ensiled alfalfa, one of the most widely used forages, with or without pyroligneous acid (PA), which was proved to have the ability to reduce ARGs in soils. The results showed that ARGs in alfalfa silage were abundant and were influenced by the fermentation parameters and microbial community. The majority of ARGs in alfalfa silage reduced during fermentation. The addition of PA could improve silage quality and reduce ARG pollution in alfalfa silage. This study can provide useful information for understanding and controlling ARG pollution in animal production.202235862964
696620.9965Effects of Lactic Acid Bacteria Inoculants on Fermentation Quality, Bacteria Communities and Antibiotic Resistance Genes in Whole-Crop Corn Silage. Feed is an important source of antibiotic resistance genes (ARGs) in animals and products, posing significant potential risks to human health and the environment. Ensiling may present a feasible method for reducing ARGs in animal feed. This study involved the addition of four types of lactic acid bacteria (LAB) inoculants, Lactiplantibacillus plantarum (LP), Pediococcus acidilactici (P), Enterococcus faecium (E), and Ligilactobacillus salivarius (LS), to whole-crop corn silage to investigate changes in ARGs, mobile genetic elements (MGEs), and their transmission risks during ensiling. The results indicated that the addition of LAB significantly reduced the ammonia nitrogen content and pH value of whole-crop corn silage, inhibited the growth of harmful microorganisms, and increased the lactic acid content (p < 0.05). The improvement effect was particularly pronounced in the P treatment group. Natural fermentation plays a significant role in reducing ARG abundance, and the addition of different types of lactic acid bacteria helps reduce the abundance of both ARGs and MGEs. Specifically, the LS treatment group exhibited a significant decrease in MGE abundance, potentially reducing the horizontal transmission risk of ARGs. Furthermore, variations in ARG abundance within different LAB strains were detected, showing a consistent trend with that in silage. ARGs and MGEs were correlated with the fermentation parameters and microbial communities (p < 0.05). This suggests that adding LAB with low levels of ARGs to silage can effectively reduce ARG contamination. Bacterial community structure, MGEs, and fermentation quality may act as driving forces for the transfer and dissemination of ARGs in the silage ecosystem.202541011310
713530.9965Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. The physicochemical properties of inhalable particles during hazy days have been extensively studied, but their biological health threats have not been well-explored. This study aimed to explore the impacts of haze pollution on airborne bacteria and antibiotic-resistance genes (ARGs) by conducting a comparative study of the bacterial community structure and functions, pathogenic compositions, and ARGs between hazy days and non-hazy days in a cold megacity in Northeast China. The results suggested that bacterial communities were shaped by local weather and customs. In this study, cold-resistant and Chinese sauerkraut-related bacterial compositions were identified as predominant genera. In the comparative analysis, higher proportions of gram-negative bacteria and pathogens were detected on hazy days than on non-hazy days. Pollutants on hazy days provided more nutrients (sulfate, nitrate and ammonium) for bacterial metabolism but also caused more bacterial cell damage and death than on non-hazy days. This study also detected increases in the sub-types and average absolute abundance of airborne resistance genes on hazy days compared to non-hazy days. The results of this study revealed that particle pollution promotes the dissemination and exchange of pathogenic bacteria and ARGs among large urban populations, which leads to a higher potential for human inhalation exposure.202032512457
799340.9965Magnetic biochar/quaternary phosphonium salt reduced antibiotic resistome and pathobiome on pakchoi leaves. Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.202337639796
799150.9965'Agricultural Waste to Treasure' - Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L. Soil contamination with antibiotics and antibiotic resistant bacteria/genes (ARB/ARGs) has becoming an emerging environmental problem. Moreover, the mixed pollutants' transfer and accumulation from soil to tuberous vegetables has posed a great threat against food security and human health. In this work, the application of two absorbing materials (maize biochar and sulfate modified eggshell) was able to reduce the poisonous effect of soil antibiotics on potato root system by stimulate the dissipation of water-soluble antibiotics in soil; and also improve food quality by increasing potato starch, protein, fat, and vitamins. Meanwhile, both amendments could effectively decrease the classes and the accumulative abundance of ARB and ARGs (sulI, sulII, catI, catII, ermA, ermB) in the edible parts of potato. The lowest abundance of ARGs was detected in the biochar application treatment, with the accumulative ARG level of 8.9 × 10(2) and 7.2 × 10(2) copies mL(-1) in potato peel (sull + catI + ermA) and tuberous root (sulI), respectively. It is the first study to demonstrate the feasibility of biochar and eggshell derived from agricultural wastes as green absorbing materials to reduce soil antibiotic, ARB, and ARGs accumulation risk in tuberous vegetable.201829945818
638460.9965Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. Coastal tidal flats are intersection zones between terrestrial and marine environments and are considered repositories of pollutants from anthropogenic activities (e.g., fishery and aquaculture). Specifically, the prevalence of antibiotics and antibiotic resistance genes (ARGs) in coastal aquaculture environments pose critical threats to estuarine ecosystems. However, the contribution of aquaculture to the occurrence and abundance of ARGs and community assemblies has not been fully explored in tidal flat zones. Thus, we investigated ARGs profiles, ARG-carrying host bacteria, and their associate microbial community in the Dongtai and Sheyang tidal flat aquaculture regions of Jiangsu, China using metagenomic assembly methods. The antibiotic concentrations in the sediment samples ranged from nd to 35.50 ng/g dw, and the antibiotic pollution in the Dongtai tidal flat was more severe than in the Sheyang tidal flats. Metagenomic assembly indicated that a total of 247 ARG subtypes associated with ARG 33 types were characterized across all samples and their abundance in the Dongtai region exceeded that in the Sheyang region. Meanwhile, 21 bacteria in the tidal flat aquaculture were identified as ARG-carrying pathogens, including Escherichia coli, Vibrio fluvialis, and Staphylococcus aureus. Using neutral and null modeling analysis to determine the community ecological processes, the results revealed bacterial and ARG communities were generally dominated by stochastic and deterministic processes, respectively. The above results suggested that aquaculture pollution was contributed to shape ARG profiles in tidal flats. The observed deterministic processes affecting the ARG community in tidal flat aquaculture also provides an effective foundation to control the risks of environmental antibiotic resistance through reducing aquaculture antibiotic usage.202235421458
766070.9965Metagenomic Insights into the Microbiome and Resistance Genes of Traditional Fermented Foods in Arabia. This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects.202337761051
767180.9964Predicting the abundance of metal resistance genes in subtropical estuaries using amplicon sequencing and machine learning. Heavy metals are a group of anthropogenic contaminants in estuary ecosystems. Bacteria in estuaries counteract the highly concentrated metal toxicity through metal resistance genes (MRGs). Presently, metagenomic technology is popularly used to study MRGs. However, an easier and less expensive method of acquiring MRG information is needed to deepen our understanding of the fate of MRGs. Thus, this study explores the feasibility of using a machine learning approach-namely, random forests (RF)-to predict MRG abundance based on the 16S rRNA amplicon sequenced datasets from subtropical estuaries in China. Our results showed that the total MRG abundance could be predicted by RF models using bacterial composition at different taxonomic levels. Among them, the relative abundance of bacterial phyla had the highest predicted accuracy (71.7 %). In addition, the RF models constructed by bacterial phyla predicted the abundance of six MRG types and nine MRG subtypes with substantial accuracy (R(2) > 0.600). Five bacterial phyla (Firmicutes, Bacteroidetes, Patescibacteria, Armatimonadetes, and Nitrospirae) substantially determined the variations in MRG abundance. Our findings prove that RF models can predict MRG abundance in South China estuaries during the wet season by using the bacterial composition obtained by 16S rRNA amplicon sequencing.202236068766
707890.9964Airborne microbial communities in the atmospheric environment of urban hospitals in China. Clinically relevant antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in bioaerosols have become a greater threat to public health. However, few reports have shown that ARB and ARGs were found in the atmosphere. High-throughput sequencing applied to environmental sciences has enhanced the exploration of microbial populations in atmospheric samples. Thus, five nosocomial bioaerosols were collected, and the dominant microbial and pathogenic microorganisms were identified by high-throughput sequencing in this study. The results suggested that the dominant microorganisms at the genus level were Massilia, Sphingomonas, Methylobacterium, Methylophilus, Micrococcineae, and Corynebacterineae. The most abundant pathogenic microorganisms were Staphylococcus saprophyticus, Corynebacterium minutissimum, Streptococcus pneumoniae, Escherichia coli, Arcobacter butzleri, Aeromonas veronii, Pseudomonas aeruginosa, and Bacillus cereus. The relationship between microbial communities and environmental factors was evaluated with canonical correspondence analysis (CCA). Meanwhile, differences in the pathogenic bacteria between bioaerosols and dust in a typical hospital was investigated. Furthermore, cultivable Staphylococcus isolates with multi-drug resistance phenotype (>3 antibiotics) in the inpatient departments were much higher than those in the transfusion area and out-patient departments, possibly attributed to the dense usage of antibiotics in inpatient departments. The results of this study might be helpful for scientifically air quality control in hospitals.201829414740
7047100.9964Characteristics of airborne bacterial communities and antibiotic resistance genes under different air quality levels. Pathogenic bacteria and antibiotic resistance genes (ARGs) in bioaerosols are major threats to human health. In this study, the microbial community structure and ARG distribution characteristics of airborne bacteria in total suspended particulates (TSP) and PM(2.5) were investigated under different air quality levels in Xinxiang, Central China. The results revealed that with the deterioration of air quality, the concentrations of airborne bacteria in both TSP and PM(2.5) decreased; however, the relative amounts of pathogenic bacteria increased. The predominant genera in pathogenic bacteria of Bacillus, Sphingomonas, Corynebacterium, Rhodococcus, and Staphylococcus were identified in both TSP and PM(2.5). Although the airborne bacteria concentrations and absolute abundances of ARGs in TSP were higher than those in PM(2.5) under identical air quality conditions, the bacterial community structure and relative amounts of pathogenic bacteria were similar. In addition, the relationship between environmental factors of ions, metal elements, and meteorological parameters and the community structures of airborne bacteria and pathogenic bacteria were also analyzed. The effects of soluble ions and metal elements on several dominant genera of total bacteria and pathogenic bacteria differed, probably due to the strong tolerance of pathogenic bacteria to harsh atmospheric environments Different subtypes of ARGs showed various distribution characteristics with variations in air quality. The deterioration of air quality can inhibit the dissemination of ARGs, as the minimum values of all ARGs and class 1 integrase intI1 were observed under Severely Polluted conditions. This study provides a comprehensive understanding of the effect of air pollution levels on the airborne bacteria community composition and ARG distribution.202235180669
6873110.9964Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution.202337133617
7152120.9964Aerosolization behavior of antimicrobial resistance in animal farms: a field study from feces to fine particulate matter. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in animal feces can be released into the atmosphere via aerosolization, posing a high health risk to farm workers. So far, little attention has been paid to the characterization of the aerosolization process. In this study, fecal and fine particulate matter (PM2.5) samples were collected from 20 animal farms involving swine, cattle, layers, and broilers, and the ARGs, ARB, and human pathogenic bacteria (HPB) were loaded in these two media. The results showed that approximately 70% of ARGs, 60% of ARBs, and 43% of HPBs were found to be preferential aerosolization. The bioaerosolization index (BI) of target 30 ARGs varied from 0.04 to 460.07, and the highest value was detected from tetW. The highest BI values of erythromycin- and tetracycline-resistant bacteria were for Kocuria (13119) and Staphylococcus (24746), respectively, and the distribution of BI in the two types of dominant ARB was similar. Regarding the bioaerosolization behavior of HPB, Clostridium saccharolyticum WM1 was the most easily aerosolized pathogen in swine and broiler farms, and Brucella abortus strain CNM 20040339 had the highest value in cattle and layer farms. Notably, the highest BI values for ARGs, ARB, and HPB were universally detected on chicken farms. Most ARGs, ARB, and HPB positively correlated with animal age, stocking density, and breeding area. Temperature and relative humidity have significant effects on the aerosolization behavior of targets, and the effects of these two parameters on the same target are usually opposite. The results of this study provide a basis for a better understanding of the contribution of animal feces to airborne ARGs and HPBs in farms, as well as for controlling the transport of the fecal microbiome to the environment through the aerosolization pathway.202337152737
3209130.9964The Antibiotic Resistome and Its Association with Bacterial Communities in Raw Camel Milk from Altay Xinjiang. Raw camel milk is generally contaminated with varied microbiota, including antibiotic-resistant bacteria (ARB), that can act as a potential pathway for the spread of antibiotic resistance genes (ARGs). In this study, high-throughput quantitative PCR and 16S rRNA gene-based Illumine sequencing data were used to establish a comprehensive understanding of the antibiotic resistome and its relationship with the bacterial community in Bactrian camel milk from Xinjiang. A total of 136 ARGs and up to 1.33 × 10(8) total ARG copies per gram were identified, which predominantly encode resistance to β-lactamas and multidrugs. The ARGs' profiles were mainly explained by interactions between the bacteria community and physicochemical indicators (77.9%). Network analysis suggested that most ARGs exhibited co-occurrence with Corynebacterium, Leuconostoc and MGEs. Overall, raw camel milk serves as a reservoir for ARGs, which may aggravate the spread of ARGs through vertical and horizontal gene transfer in the food chain.202337959048
7077140.9964Surfaces of gymnastic equipment as reservoirs of microbial pathogens with potential for transmission of bacterial infection and antimicrobial resistance. Gymnastic equipment surfaces are shared by many people, and could mediate the transfer of bacterial pathogens. To better understand this detrimental potential, investigations on the reservoirs of bacterial pathogens and antimicrobial resistance on the surfaces of gymnastic equipment were performed by analyzing the bacterial community structures, prevalence of viable bacteria, and presence of antimicrobial resistance on both indoor and outdoor gymnastic facilities. The results of high-throughput 16S rDNA amplicon sequencing showed that Gram-positive bacteria on the surfaces of indoor gymnastic equipment significantly enriched, including the opportunistic pathogen Staphylococcus strains, while Enterobacteriaceae significantly enriched on surfaces of outdoor gymnastic equipment. The analysis of α-diversities showed a higher richness and diversity for bacterial communities on the surfaces of gymnastic equipment than the environment. Analysis of β-diversities showed that the bacterial communities on the surfaces of gymnastic equipment differ significantly from environmental bacterial communities, while the bacterial communities on indoor and outdoor equipment are also significantly different. Thirty-four bacterial isolates were obtained from the surfaces of gymnastic equipment, including three multidrug Staphylococcus and one multidrug resistant Pantoea. In particular, Staphylococcus hemolyticus 5-6, isolated from the dumbbell surface, is a multidrug resistant, hemolytic, high- risk pathogen. The results of quantitative PCR targeting antibiotic resistance related genes (intI1, sul1 and bla (TEM)) showed that the abundances of sul1 and bla (TEM) genes on the surfaces of gymnastic equipment are higher than the environment, while the abundances of sul1 gene on indoor equipment are higher than outdoor equipment. These results lead to the conclusion that the surfaces of gymnastic equipment are potential dissemination pathways for highly dangerous pathogens as well as antimicrobial resistance, and the risks of indoor equipment are higher than outdoor equipment.202337152727
3218150.9964Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were bla(TEM), tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH(3) and H(2)S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH(3) and H(2)S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.202235850323
7723160.9964Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.202337364839
7995170.9964Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge. Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%-22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions.202032023801
7266180.9963Effect of hydraulic conditions on the prevalence of antibiotic resistance in water supply systems. The incidence of antibiotic resistance genes (ARGs) in tap water leads to potential risks to human health and draws more and more attention from the public. However, ARGs harbored in drinking water remain largely unexplored. In this study, a simulated water supply system was designed to study the effects of different pipe flow rates on the transmission of antibiotic resistance in water supply systems. We observed that the biofilm in low flow rate pipeline (0.1 m/s, 0.3 m/s) had higher concentration of both antibiotic resistant bacteria (ARB) and ARGs, while high flow rate (0.5 m/s and 0.7 m/s) resulted in low relative abundance of ARB and high relative abundance of ARGs in biofilms. The results showed that the high flow rate led to an abundance in non-culturable bacteria and a scarcity of nutrients in the biofilm, giving rise to its antibiotic resistance. High-throughput sequencing pointed out that the high content of Caulobacteraceae and Paenibacillus were determined in biofilms of high flow rate pipelines. Similarity analysis of microbial community composition of inlet water (IW), biofilms and outlet water (OW) showed that the composition of microbial community in OW was more similar to that in biofilms than in IW. Genera of bacteria in biofilms and OW (Brevundimonas, Brevibacillus and Pseudomonas) which had relationship with sulⅠ, sulⅡ in biofilms (P < 0.05) had higher relative abundance than that in IW. Different flow rate conditions had an impact on the biomass, microbial community, ARB and ARGs composition of biofilms. Thus, the detachment of biofilms can increased the antibiotic resistance of the water.201931265981
7265190.9963Airborne bacterial communities and antibiotic resistance gene dynamics in PM(2.5) during rainfall. The biotoxicity and public health effects of airborne bacteria and antibiotic resistance genes (ARGs) in fine particulate matter (PM(2.5)) are being increasingly recognized. The characteristics of bacterial community composition and ARGs in PM(2.5) under different rainfall conditions were studied based on the on-site synchronous measurements in downtown Beijing. Marked differences were evident in the bacterial community characteristics of PM(2.5) before, during, and after rain events (p < 0.05). The rain intensities affected the bacterial community abundance in PM(2.5) and heavy rain had greater washing effects. The Proteobacteria (phylum level), α-Proteobacteria (class level), Pseudomonadales (order level), Pseudomonadaceae (family level), and Cyanobacteria (genus level) were the dominant bacterial taxa associated with PM(2.5) in Beijing during rain events. However, the bacteria at each level that displayed the biggest percentage variance was not the dominant type under different rain intensities. The ermB, tetW, and mphE genes were the primary ARGs, with abundances of 18 to 30 copies/m(3), which was a relatively smaller value than other observations. Real-time monitoring of the meteorological condition of rain events and physicochemical properties of PM(2.5) were used to identify the main factors during rainfall. The bacterial community was sensitive to the ionic and metal element components of PM(2.5) during rainfall. The abundance of ARGs was closely correlated with some groups of the bacterial community, which were also close to the initial value before the rain. Statistical analysis demonstrated that temperature, relative humidity, and duration of rain were the primary meteorological factors for the biological characteristics. The ionic species, rather than metal elements, in PM(2.5) were the sensitive factors for the bacteria community and ARGs, which varied at the phylum, class, order, family, and genus levels. The observations provide insights for the biological risk assessment in an urban rainfall water and the potential health impact on citizens.202031726367