HELP - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
955700.9985Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians' diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles.202235625299
957810.9984Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. The emergence of multi-drug resistance and bacteria with increased virulence is a familiar refrain to the contemporary microbiologist. Although intense research over the past decade has ascribed much molecular detail to these processes, more esoteric questions remain: for example, why are some bacteria evolving increased virulence towards humans, what are the genes underpinning this virulence potential and what are the selective pressures that favor these traits? A holistic approach that considers the organismal biology of bacteria with their diverse hosts seems appropriate to begin to tackle such issues. As it happens, the type III secretion system is turning out to be a central player in the adaptation of both parasites and mutualists to diverse hosts. With this in mind, human interventions in agriculture, animal husbandry and even drug discovery that could influence the selection of bacteria with improved type III secretion system function should be critically appraised.200919217298
955220.9984Addressing antibiotic resistance: computational answers to a biological problem? The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.202337031568
918430.9983Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.202337770168
918740.9983Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review. Antibiotic resistance, a known global health challenge, involves the flow of bacteria and their genes among animals, humans, and their surrounding environment. It occurs when bacteria evolve and become less responsive to the drugs designated to kill them, making infections harder to treat. Despite several obstacles preventing the spread of genes and bacteria, pathogens regularly acquire novel resistance factors from other species, which reduces their ability to prevent and treat such bacterial infections. This issue requires coordinated efforts in healthcare, research, and public awareness to address its impact on human health worldwide. This review outlines how recent advances in gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in combating antibiotic resistance. Our focus will remain on the relationship between CRISPR/cas9 and its impact on antibiotic resistance and its related infections. Moreover, the prospects of this new advanced research and the challenges of adopting these technologies against infections will be outlined by exploring its different derivatives and discussing their advantages and limitations over others, thereby providing a corresponding reference for the control and prevention of the spread of antibiotic resistance.202438994001
956750.9983How to discover new antibiotic resistance genes? Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms.201930895843
953060.9983The role of biofilms in otolaryngologic infections. PURPOSE OF REVIEW: Bacterial biofilms have recently been shown to be important in diseases of the head and neck. Because the concept of biofilms is novel to most practitioners, it is important to gain a basic understanding of biofilms and to recognize that strategies developed to treat planktonic bacteria are ineffective against bacteria in a biofilm. RECENT FINDINGS: Bacteria preferentially exist in complex, surface-attached organizations known as biofilms. Bacteria in biofilms express a different set of genes than their planktonic counterparts and have markedly different phenotypes. Biofilm bacteria communicate with each other, and have mechanisms to diffuse nutrients and dispose of waste. Biofilms provide bacteria with distinct advantages, including antimicrobial resistance and protection from host defenses. Thus, bacteria exist in a far more complex fashion than previously thought and can best be thought of as "self-assembling multicellular communities." Although a focus on the planktonic form of bacteria has been useful in understanding acute infections, chronic infections are much better understood as biofilm illnesses. Biofilms have been shown to be involved in chronic otitis media, chronic tonsillitis, cholesteatoma, and device-associated infections. SUMMARY: Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the biofilm concept of disease is beginning to spread throughout the clinical world. Understanding that many of the infections that affect structures of the head and neck are actually biofilm related is fundamental to developing rational strategies for treatment and prevention.200415167027
956170.9983The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Modern medicine is built on antibiotics. Antibiotics are something that we take for granted. We have however spent over 60 years educating bacteria to become resistant, and the global resistance tsunami has caught everyone unawares. Since bacteria have changed, we also have to change, and to change most of the practices of how we use antibiotics. Because the development of new antibiotics is so expensive, a stewardship approach may help to preserve those that we have now while we work to develop new antibiotics and to develop other approaches to controlling and treating infections. We need to adopt the ethic of Good Stewardship Practice (GSP) as an active and dynamic process of continuous improvement in antibiotic use, a process with many steps of different sizes involving everyone involved in antibiotic use. All antibiotic users have an important role to play in GSP. Although the resistance situation is pessimistic, and the future of antibiotics looks uncertain, we are fortunately entering what may be seen as the golden age of microbiology. This encompasses an astonishing array of technologies for rapid pathogen and resistance gene detection, for clone identification by genome sequencing, for identification of novel bacterial genes and for identification of the Achilles' heels of different pathogens. Future antibiotics may have to be far more targeted to the individual pathogen and the site of infection. A global tax on antibiotics might reduce their use while funding the cost of developing new antibiotics and new approaches to control of infectious diseases.201424646601
966880.9983Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications.201727768825
827890.9983Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. All social organisms experience dilemmas between cooperators performing group-beneficial actions and cheats selfishly exploiting these actions. Although bacteria have become model organisms to study social dilemmas in laboratory systems, we know little about their relevance in natural communities. Here, we show that social interactions mediated by a single shareable compound necessary for growth (the iron-scavenging pyoverdine) have important consequences for competitive dynamics in soil and pond communities of Pseudomonas bacteria. We find that pyoverdine non- and low-producers co-occur in many natural communities. While non-producers have genes coding for multiple pyoverdine receptors and are able to exploit compatible heterologous pyoverdines from other community members, producers differ in the pyoverdine types they secrete, offering protection against exploitation from non-producers with incompatible receptors. Our findings indicate that there is both selection for cheating and cheating resistance, which could drive antagonistic co-evolution and diversification in natural bacterial communities.Lab strains of Pseudomonas are model systems for the evolution of cooperation over public goods (iron-scavenging siderophores). Here, ButaitÄ— et al. add ecological and evolutionary insight into this system by showing that cheating and resistance to cheating both shape competition for iron in natural Pseudomonas communities.201728871205
9666100.9983The comprehensive antibiotic resistance database. The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.201323650175
9475110.9983Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions.200919442589
9558120.9983Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources. Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.202540770471
9186130.9982From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance-A Review. In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.202438702575
9483140.9982Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.202438689039
6683150.9982Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.202236671228
4085160.9982The antibiotic resistome. IMPORTANCE OF THE FIELD: Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. AREAS COVERED IN THIS REVIEW: The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. WHAT THE READER WILL GAIN: The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. TAKE HOME MESSAGE: The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries.201022827799
9485170.9982Evolution of Drug Resistance in Bacteria. Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections.201627193537
9671180.9982Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.201222517266
9594190.9982Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. Despite being very simple organisms, bacteria possess an outstanding ability to adapt to different environments. Their long evolutionary history, being exposed to vastly different physicochemical surroundings, allowed them to detect and respond to a wide range of signals including biochemical, mechanical, electrical, and magnetic ones. Taking into consideration their adapting mechanisms, it is expected that novel materials able to provide bacteria with specific stimuli in a biomimetic context may tailor their behavior and make them suitable for specific applications in terms of anti-microbial and pro-microbial approaches. This review maintains that electroactive smart materials will be a future approach to be explored in microbiology to obtain novel strategies for fighting the emergence of live threatening antibiotic resistance.201931681752