# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6796 | 0 | 0.9969 | Assessing the pig microbial health impacts of smallholder farming. The livestock industry has long been a hotspot environment for antibiotic resistance genes, with smallholder farming still holding a significant position in pig farming. However, the microbial antibiotic resistance and pathogen risks in pigs under the smallholder farming model remain unclear. We systematically analyzed the antibiotic resistance and microbial composition of pig feces from smallholder and large-scale farming models in Sichuan. The results indicated a lower abundance of antibiotic resistance genes (ARGs) and similar microbial composition in smallholder farming compared to large-scale farming. Beneficial bacteria were more abundant in small-scale farming, whereas large-scale farming exhibited more ARGs, virulence genes, and human pathogenic bacteria (HPBs), including ESBL Escherichia coli strains closely related to human strains, indicating higher zoonotic risk. The findings suggest that smallholder farming presents a relatively better microbial composition and resistance profile, highlighting its advantages over large-scale farming in terms of pig and human health. It is noteworthy that a considerable proportion of HPBs carrying ARGs still exist in the feces from smallholder farming, and given the openness of fecal handling, there remains a high risk of transmitting ARGs and pathogens to humans. | 2024 | 39454358 |
| 6819 | 1 | 0.9969 | Risk characteristics of resistome coalescence in irrigated soils and effect of natural storage of irrigation materials on risk mitigation. Irrigation and fertilization are the routinely agricultural practices but also cause resistome coalescence, by which the entire microbiomes from irrigation materials invade soil microbial community, to transfer antibiotic resistance genes (ARGs) in the coalesced soils. Although studies have reported the effect of irrigation or fertilization on the prevalence and spread of ARGs in soils, risk characteristics of resistome coalescence in irrigation system remain to be demonstrated and few has shown whether natural storage of irrigation materials will reduce resistance risks. To fill the gaps, two microscopic experiments were conducted for deeply exploring resistance risks in the soils irrigated with wastewater and manure fertilizer from a perspective of community coalescence by metagenomic analysis, and to reveal the effect of natural storage of irrigation materials on the reduction of resistance risks in the coalesced soils. Results showed irrigation and coalescence significantly increased the abundance and diversity of ARGs in the soils, and introduced some emerging resistance genes into the coalesced community, including mcr-type, tetX, qacB, and an array of genes conferring resistance to carbapenem. Procrustes analysis demonstrated microbial community was significantly correlated with the ARGs in coalesced soils, and variance partitioning analysis quantified its dominant role on shaping resistome profile in the environment. Besides ARGs, abundant and diverse mobile genetic elements (MGEs) were also identified in the coalesced soils and co-existed on the ARG-carrying contigs, implying potential transfer risk of ARGs in the irrigation system. Further, the analysis of metagenome-assembled genomes (MAGs) confirmed the risk by recovering 358 ARGs-carrying MAGs and identifying the resistant bacteria that co-carried multiple ARGs and MGEs. As expected, the natural storage of irrigation water and manure fertilizer reduced about 27%-54% of ARGs, MGEs and virulence factors in the coalesced soils, thus caused the soils to move towards lower resistance risks to a certain extent. | 2023 | 37742860 |
| 6447 | 2 | 0.9968 | Climate warming fuels the global antibiotic resistome by altering soil bacterial traits. Understanding the implications of global warming on the spread of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) within soil ecosystems is crucial for safeguarding human well-being and sustaining ecosystem health. However, there is currently a lack of large-scale, systematic underpinning data needed to examine this issue. Here, using an integrative approach that combines field experiments, extensive global metagenomic data and microbial culturing, we show that warming enriches bacteria with ARGs and VFGs, increases metabolic complexity and adaptability in bacteria, and accelerates genetic alterations related to ARG and VFGs development. Our validation experiments confirm that the warming effect is more pronounced in colder regions. Machine learning predictions further suggest that warming will increase the soil ARG abundance, especially in some areas that rely heavily on fossil fuels. These results suggest another major negative consequence of global warming, highlighting the importance of developing and implementing sustainability policies that simultaneously combat climate change and antibiotic resistance. | 2025 | 40468041 |
| 3171 | 3 | 0.9967 | Health risk ranking of antibiotic resistance genes in the Yangtze River. Antibiotic resistance is an escalating global health concern, exacerbated by the pervasive presence of antibiotic resistance genes (ARGs) in natural environments. The Yangtze River, the world's third-longest river, traversing areas with intense human activities, presents a unique ecosystem for studying the impact of these genes on human health. Here, we explored ARGs in the Yangtze River, examining 204 samples from six distinct habitats of approximately 6000 km of the river, including free-living and particle-associated settings, surface and bottom sediments, and surface and bottom bank soils. Employing shotgun sequencing, we generated an average of 13.69 Gb reads per sample. Our findings revealed a significantly higher abundance and diversity of ARGs in water-borne bacteria compared to other habitats. A notable pattern of resistome coalescence was observed within similar habitat types. In addition, we developed a framework for ranking the risk of ARG and a corresponding method for calculating the risk index. Applying them, we identified water-borne bacteria as the highest contributors to health risks, and noted an increase in ARG risks in particle-associated bacteria correlating with heightened anthropogenic activities. Further analysis using a weighted ARG risk index pinpointed the Chengdu-Chongqing and Yangtze River Delta urban agglomerations as regions of elevated health risk. These insights provide a critical new perspective on ARG health risk assessment, highlighting the urgent need for strategies to mitigate the impact of ARGs on human health and to preserve the ecological and economic sustainability of the Yangtze River for future human use. | 2024 | 38351955 |
| 6824 | 4 | 0.9967 | Anthropogenic gene dissemination in Tibetan Plateau rivers: sewage-driven spread, environmental selection, and microeukaryotic inter-trophic driving factors. The spread of anthropogenic genes, such as antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs), and antibiotic-resistant bacteria (ARBs), is a growing public health concern. However, the role of anthropogenic activities in the dissemination of these genes and bacteria in Tibetan Plateau rivers is still unclear. In this study, we analyzed 138 metagenomic samples from water and sediment across nine Tibetan rivers, along with sewage samples from 21 wastewater treatment plants (WWTPs), at both the gene and contig levels, to investigate the spread of the sewage-enriched genes and their bacterial hosts (contigs) in Tibetan rivers. Overall, sewage input was positively correlated with increased the abundance of an average 56 % and 17 % of detected genes in water and sediment, respectively. However, FEAST source tracking analysis revealed that the overall contribution of sewage across all rivers was significantly lower than that of water and sediment. Additionally, sewage's impact varied across rivers, with the Yarlung Zangbo, the largest river, exhibiting limited influence despite receiving inputs from smaller rivers and WWTPs. Neutral community model (NCM) suggested that neutral processes and negative selection predominantly governed the spread of majority of highly abundant sewage-enriched genes and contigs, suggesting restricted environmental spread. In contrast, a subset of genes over-represented relative to neutral expectations (above-neutral prediction) showed lower overall abundance but higher richness, potentially reflecting selection that favor their retention in certain downstream environments. Furthermore, sewage-enriched genes and contigs in water, regardless of their community assembly processes, were linked to microbial interaction modules dominated by microeukaryotic groups associated with sewage, including consumer protists (ciliate), human parasites (e.g., Naegleria), algae, and fungi. These interactions may facilitate the dissemination of antimicrobial resistance in aquatic environments, though this pattern was less pronounced in sediment. | 2025 | 40446767 |
| 6531 | 5 | 0.9967 | A comprehensive framework of health risk assessment for antibiotic resistance in aquatic environments: Status, progress, and perspectives. Antibiotic resistance (AR), driven by antibiotics as emerging pollutants, has become a critical global health threat, jeopardizing both environmental and human health. The persistence and spread of AR in aquatic ecosystems are governed by the intricate interplay between antibiotics, antibiotic resistance genes (ARGs), and antibiotic-resistant bacteria (ARB), which collectively influences its occurrence, transportation, and fate in aquatic ecosystems. However, most assessments focus primarily on antibiotics and ARGs, often relying on single-factor criteria while overlooking critical influence factors such as ARG forms, non-antibiotic chemicals, antibiotic pressure, and microbial competition. Furthermore, many fail to incorporate potential future risks, limiting their predictive accuracy and overall effectiveness in addressing AR in aquatic environments. To bridge these research gaps, we introduce a comprehensive health risk assessment framework that integrates the interactions among antibiotics, ARGs, and ARB. The proposed approach comprises four steps: 1. Determining the type of water body; 2. Performing model simulations; 3. Assessing antibiotics and ARGs; and 4. Evaluating ARB. Finally, a comprehensive risk index for AR is established, along with a corresponding hierarchical risk ranking system. Moreover, to demonstrate the practical application of the framework, an assessment of antibiotic resistance risk was conducted using a typical lake in Northeast China as a case study, indicating the efficacy of the proposed framework in quantifying the multidimensional health risk of AR. This framework not only provides a crucial foundation for dynamic health risk assessment, but also paving the way for more effective mitigation strategies to safeguard both aquatic ecosystems and human health in the future. | 2025 | 40914069 |
| 6977 | 6 | 0.9966 | Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked. | 2022 | 35810986 |
| 6805 | 7 | 0.9966 | Environmentally persistent microbial contamination in agricultural soils: High risk of pathogenicity and antibiotic resistance. Persistent microbial contamination commonly occurs in the environment. However, the characteristics and associated risks remain largely unknown. The coexistence of virulence factor genes (VFGs) and "last-resort" antibiotic resistance genes (LARGs) on human bacterial pathogens (HBPs) are notorious, creating ecological concerns and health risks. Herein, we explored the pathogenicity and antibiotic resistance levels of LARG-harboring HBPs in agricultural soils. Our findings revealed a high distribution level of VFGs and LARGs in soils (an absolute abundance up to 4.7 × 10(7) gene copies/g soil) by quantitative PCR (qPCR). Furthermore, most isolated LARG-harboring HBPs exhibited a 100 % lethality rate to Galleria mellonella. LARG-carrying plasmids had a low fitness cost to their host bacteria, implying the high adaptation of these plasmids within the HBPs. Most importantly, multiple LARG and VFG plasmid fusion and core genetic arrangements suggested that these LARG/VFG-linked plasmids endowed the stable and persistent horizontal spread of these genes in and/or cross the species and environments. This study not only unveiled high risk, multisource, compliance and stability aspects of environmentally persistent microbial contamination but also illuminated the importance of linking the phenotype-genotype-niche colonization of environmental microbial contamination within "One Health" framework. | 2024 | 39059024 |
| 6820 | 8 | 0.9966 | Microcosm experiments deciphered resistome coalescence, risks and source-sink relationship of antibiotic resistance in the soil irrigated with reclaimed water. Reclaimed water is widely used in agriculture irrigation to alleviate water scarcity, whereas the dissemination of antibiotic resistance genes (ARGs) in the soil it introduces has attracted widespread attention. Currently, few studies have systematically elucidated the coalescence of the resistome originating from reclaimed water with the soil's native community. Also, the effects and mechanisms of irrigation on the dissemination of ARGs in soils have yet to be demonstrated. To address this gap, microcosm experiments have been conducted in this study to decipher the resistome coalescence, risks and source-sink relationship of ARGs in soils irrigated with reclaimed water. The results show 237 ARGs, 55 mobile genetic elements (MGEs) and 28 virulence factors were identified in the irrigated soils. Irrigation increased the abundance and diversity of ARGs in the soil by introducing antibiotic-resistant bacteria, altering the microbial community and facilitating horizontal transfer of ARGs via MGEs, and ultimately exacerbated resistome risks in the environment. Relatively, a larger volume of irrigation water led to a more complex propagation network of the resistome. Source apportionment analysis suggested reclaimed water contributed less than 15 % of ARGs in the irrigated soils, whereas its contribution proportion increased with a larger volume of irrigation water. | 2025 | 39874760 |
| 7319 | 9 | 0.9966 | Comprehensive Study of Antibiotics and Antibiotic Resistance Genes in Wastewater and Impacted Mediterranean Water Environments. Background: The spread of antimicrobial resistance is a central public health problem. Wastewater treatment plants and impacted environments are well-known hotspots for antibiotic resistance. However, there is still limited knowledge regarding where antibiotic resistance genes (ARGs) acquire mobility. Method: In this study, we aimed to gather evidence on the seasonal patterns of ARG spread in two Mediterranean areas from NE and E of Spain (Ebro River and Ebro Delta, and Xúquer River and Albufera de València), correlating ARG presence, with special focus on the faecal bacteria Escherichia coli, with antibiotic residues and environmental conditions. The analytical methodology employed was based on a suspect screening approach, while a novel prioritisation approach for antibiotics was proposed to identify those areas more susceptible to the spread of ARG. Results: Our findings demonstrate that ARG levels in wastewater were similar across different seasons, although a greater diversity of ARGs was recorded in summer. We hypothesise that horizontal gene transfer among aquatic bacterial populations during the northeastern Mediterranean summer, when temperatures reach approximately 35~40 °C, could be a key driver of ARG dissemination. By contrast, the highest concentrations of antibiotics in winter samples, with temperatures around 5~10 °C, may promote the spread of microbial resistance. Conclusions: Our key findings highlight that water temperature and sunlight irradiation are crucial factors influencing antibiotic levels and microbial abundance, requiring further investigation in future studies. | 2025 | 40298490 |
| 6879 | 10 | 0.9966 | Airborne antibiotic and metal resistance genes - A neglected potential risk at e-waste recycling facilities. Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems. | 2024 | 38365028 |
| 6812 | 11 | 0.9966 | Exploring the dynamics of antibiotic resistome on plastic debris traveling from the river to the sea along a representative estuary based on field sequential transfer incubations. The environmental risks arising from ubiquitous microplastics or plastic debris (PD) acting as carriers of antibiotic resistance genes (ARGs) have attracted widespread attention. Enormous amounts of plastic waste are transported by rivers and traverse estuaries into the sea every year. However, changes in the antibiotic resistome within the plastisphere (the biofilms formed on PD) as PD travels through estuaries are largely unknown. In this study, we performed sequential migration incubations for PD along Haihe Estuary to simulate the natural process of PD floating from rivers to the ocean. Metagenomic sequencing and analysis techniques were used to track microbial communities and antibiotic resistome on migrating PD and in seawater representing the marine environment. The total relative gene copies of ARGs on traveling PD remained stable. As migration between greatly varied waters, additional ARG subtypes were recruited to the plastisphere. Above 80 % ARG subtypes identified in the plastisphere were persistent throughout the migration, and over 30 % of these persistent ARGs were undetected in seawater. The bacterial hosts composition of ARGs on PD progressively altered as transported downstream. Human pathogenic bacteria carrying ARGs (HPBs-ARG) exhibited decreasing trends in abundance and species number during transfer. Individual HPBs-ARG persisted on transferred PD and were absent in seawater samples, comprising Enterobacter cloacae, Klebsiella pneumoniae, Mycobacterium tuberculosis, and Vibrio parahaemolyticus. Based on all detected ARGs and HPBs-ARG, the Projection Pursuit model was applied to synthetically evaluate the potential risks of antibiotic resistance on migrating PD. Diminished risks on PD were observed upon the river-to-sea journey but consistently remained significantly higher than in seawater. The potential risks posed to marine environments by drifting PD as dispersal vectors for antibiotic resistance deserve greater attention. Our results provide initial insights into the dynamics or stability of antibiotic resistome on PD crossing distinct aquatic systems in field estuaries. | 2024 | 38447722 |
| 7431 | 12 | 0.9966 | Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors. | 2018 | 29505255 |
| 6529 | 13 | 0.9965 | The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Antibiotic resistance comprising of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is an emerging problem causing global human health risks. Several reviews exist on antibiotic resistance in various environmental compartments excluding the air-borne resistome. An increasing body of recent evidence exists on the air-borne resistome comprising of antibiotic resistance in air-borne bioaerosols from various environmental compartments. However, a comprehensive review on the sources, dissemination, behavior, fate, and human exposure and health risks of the air-borne resistome is still lacking. Therefore, the current review uses the source-pathway-receptor-impact-mitigation framework to investigate the air-borne resistome. The nature and sources of antibiotic resistance in the air-borne resistome are discussed. The dissemination pathways, and environmental and anthropogenic drivers accounting for the transfer of antibiotic resistance from sources to the receptors are highlighted. The human exposure and health risks posed by air-borne resistome are presented. A health risk assessment and mitigation strategy is discussed. Finally, future research directions including key knowledge gaps are summarized. | 2022 | 34798728 |
| 7326 | 14 | 0.9965 | Antibiotic resistance genes associated with size-segregated bioaerosols from wastewater treatment plants: A review. The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 μm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future. | 2024 | 38128715 |
| 3168 | 15 | 0.9965 | Mangrove Ecosystems as Reservoirs of Antibiotic Resistance Genes: A Narrative Review. Background: Mangrove ecosystems are critical coastal environments providing ecological services and acting as buffers between terrestrial and marine systems. Rising antibiotic use in aquaculture and coastal agriculture has led to the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in these habitats. Aim: This narrative review aims to synthesize current knowledge on the prevalence, diversity, and environmental drivers of ARGs in mangrove ecosystems, highlighting their role as reservoirs and the potential for horizontal gene transfer. Methods: Studies published up to September 2024 were identified through PubMed, Scopus, Web of Science, and Google Scholar. Inclusion criteria focused on ARGs and ARB in mangrove sediments, water, and associated biota. Data on ARG prevalence, microbial community composition, detection methods, and environmental factors were extracted and narratively synthesized. Results: Seventeen studies from Asia, South America, and Africa were included. ARGs conferring resistance to tetracyclines, sulfonamides, β-lactams, and multidrug resistance were found to be widespread, particularly near aquaculture and urban-influenced areas. Metagenomic analyses revealed diverse resistomes with frequent mobile genetic elements, indicating high potential for horizontal gene transfer. Environmental factors, including sediment type, organic matter, and salinity, influenced ARG abundance and distribution. Conclusions: Mangrove ecosystems act as both reservoirs and natural buffers for ARGs. Sustainable aquaculture practices, continuous environmental monitoring, and integrated One Health approaches are essential to mitigate ARG dissemination in these sensitive coastal habitats. | 2025 | 41148714 |
| 6533 | 16 | 0.9965 | The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective. Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments-water, soil, and air-as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures-including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions-amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. | 2025 | 40867959 |
| 6978 | 17 | 0.9965 | Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. Understanding the future distribution of antibiotic resistance in natural soil ecosystems is important to forecast their impacts on ecosystem and human health under projected climate change scenarios. Therefore, it is critical and timely to decipher the links between climate warming and antibiotic resistance, two of Earth's most imminent problems. Here, we explored the role of five-year simulated climate warming (+ 4 °C) on the diversity and proportions of soil antibiotic resistance genes (ARGs) across three seasons in both plantation and natural forest ecosystems. We found that the positive effects of warming on the number and proportions of ARGs were dependent on the sampling seasons (summer, autumn and winter), and seasonality was a key factor driving the patterns of ARG compositions in forest soils. Fifteen ARGs, conferring resistance to common antibiotics including aminoglycoside, beta-lactam, macrolide-lincosamide-streptogramin B, multidrug, sulfonamide, and tetracycline, were significantly enriched in the warming treatment. We showed that changes in soil properties and community compositions of bacteria, fungi and protists can explain the changes in soil ARGs under climate warming. Taken together, these findings advance our understanding of environmental ARGs under the context of future climate change and suggest that elevated temperature may promote the abundance of specific soil ARGs, with important implications for ecosystem and human health. | 2022 | 35158246 |
| 7338 | 18 | 0.9965 | Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. Wastewater surveillance is a powerful tool to assess the risks associated with antibiotic resistance in communities. One challenge is selecting which analytical tool to deploy to measure risk indicators, such as antibiotic resistance genes (ARGs) and their respective bacterial hosts. Although metagenomics is frequently used for analyzing ARGs, few studies have compared the performance of long-read and short-read metagenomics in identifying which bacteria harbor ARGs in wastewater. Furthermore, for ARG host detection, untargeted metagenomics has not been compared to targeted methods such as epicPCR. Here, we 1) evaluated long-read and short-read metagenomics as well as epicPCR for detecting ARG hosts in wastewater, and 2) investigated the host range of ARGs across the wastewater treatment plant (WWTP) to evaluate host proliferation. Results highlighted long-read revealed a wider range of ARG hosts compared to short-read metagenomics. Nonetheless, the ARG host range detected by long-read metagenomics only represented a subset of the hosts detected by epicPCR. The ARG-host linkages across the influent and effluent of the WWTP were characterized. Results showed the ARG-host phylum linkages were relatively consistent across the WWTP, whereas new ARG-host species linkages appeared in the WWTP effluent. The ARG-host linkages of several clinically relevant species found in the effluent were identified. | 2024 | 38490149 |
| 6532 | 19 | 0.9965 | Antibiotic resistance in urban soils: Dynamics and mitigation strategies. Antibiotic resistance (AR) is a critical global health issue with significant clinical and economic implications. AR occurs when microorganisms develop mechanisms to withstand the effects of antibiotics, reducing treatment efficacy and increasing the risk of mortality and healthcare costs. While the connection between antibiotic use in clinical and agricultural settings and the emergence of AR is well-established, the role of urban soils as reservoirs and spreaders of AR is underexplored. This review examines the complex dynamics of AR in urban soils, highlighting the various sources of antibiotics, including domestic wastewater, industrial effluents, urban agricultural practices, but also microplastics and domestic animal excrements. The selective pressure exerted by these anthropogenic sources promotes the proliferation of antibiotic-resistant bacteria, particularly through horizontal gene transfer, which facilitates the transmission of resistance genes among soil microorganisms in urban environments. About that, the presence of antibiotics in urban soils poses a significant threat to public health by potentially transferring resistance genes to human pathogens through multiple pathways, including direct contact, food consumption, and water ingestion. Furthermore, AR in urban soils disrupts microbial community dynamics, impacting soil fertility, plant growth, and overall environmental quality. Therefore, this review aims to address gaps in understanding AR in urban soils, offering insights into its implications for human health and ecosystem integrity. By identifying these gaps and suggesting evidence-based strategies, this review proposes valid and sustainable solutions to mitigate and counteract the spread of AR in urban environments. | 2024 | 39384008 |